Found 11 results
Filters: Author is X.L. Zhao  [Clear All Filters]
F. Ye, Qiu, M. H., Xu, H. Y., Lan, X., Zhu, Q., Zhao, X. L., Yin, H. D., Liu, Y. P., Wang, Y., Ye, F., Qiu, M. H., Xu, H. Y., Lan, X., Zhu, Q., Zhao, X. L., Yin, H. D., Liu, Y. P., and Wang, Y., Identification and characterization of SREBF2 expression and its association with chicken carcass traits, vol. 15, p. -, 2016.
F. Ye, Qiu, M. H., Xu, H. Y., Lan, X., Zhu, Q., Zhao, X. L., Yin, H. D., Liu, Y. P., Wang, Y., Ye, F., Qiu, M. H., Xu, H. Y., Lan, X., Zhu, Q., Zhao, X. L., Yin, H. D., Liu, Y. P., and Wang, Y., Identification and characterization of SREBF2 expression and its association with chicken carcass traits, vol. 15, p. -, 2016.
X. L. Zhao, Wang, Y. J., Wu, Y. L., and Han, W. H., Role of COL9A1 genetic polymorphisms in development of congenital talipes equinovarus in a Chinese population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSFor their tremendous help, we thank the staff of the Fourth People’s Hospital of Shaanxi and the First Hospital of Yulin, who assisted us in collecting the blood samples. REFERENCESBrachvogel B, Zaucke F, Dave K, Norris EL, et al (2013). Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome. J. Biol. Chem. 288: 13481-13492. Cardy AH, Barker S, Chesney D, Sharp L, et al (2007). Pedigree analysis and epidemiological features of idiopathic congenital talipes equinovarus in the United Kingdom: a case-control study. BMC Musculoskelet. Disord. 8: 62. Cardy AH, Sharp L, Torrance N, Hennekam RC, et al (2011). Is there evidence for aetiologically distinct subgroups of idiopathic congenital talipes equinovarus? A case-only study and pedigree analysis. PLoS One 6: e17895. Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, et al (2001). A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am. J. Hum. Genet. 69: 969-980. Itoh T, Shirahama S, Nakashima E, Maeda K, et al (2006). Comprehensive screening of multiple epiphyseal dysplasia mutations in Japanese population. Am. J. Med. Genet. A. 140: 1280-1284. Jakkula E, Melkoniemi M, Kiviranta I, Lohiniva J, et al (2005). The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis Cartilage 13: 497-507. Janeczko Ł, Janeczko M, Chrzanowski R, Zieliński G, et al (2014). The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease. Neurol. Neurochir. Pol. 48: 60-62. Kancherla V, Romitti PA, Caspers KM, Puzhankara S, et al (2010). Epidemiology of congenital idiopathic talipes equinovarus in Iowa, 1997-2005. Am. J. Med. Genet. A. 152A: 1695-1700. Liu LY, Jin CL, Cao DH, Zhao N, et al (2007). [Analysis of association between COL9A1 gene and idiopathic congenital talipes equinovarus]. Yi Chuan 29: 427-432. Liu LY, Jin CL, Jiang L, Lin CK, et al (2011). [Expression of COL9A1 gene and its polymorphism in children with idiopathic congenital talipes equinovarus]. Zhongguo Dang Dai Er Ke Za Zhi 13: 478-481. Parsons P, Gilbert SJ, Vaughan-Thomas A, Sorrell DA, et al (2011). Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage. J. Biol. Chem. 286: 34986-34997. Posey KL, Hankenson K, Veerisetty AC, Bornstein P, et al (2008). Skeletal abnormalities in mice lacking extracellular matrix proteins, thrombospondin-1, thrombospondin-3, thrombospondin-5, and type IX collagen. Am. J. Pathol. 172: 1664-1674. Sahin O, Yildirim C, Akgun RC, Haberal B, et al (2013). Consanguineous marriage and increased risk of idiopathic congenital talipes equinovarus: a case-control study in a rural area. J. Pediatr. Orthop. 33: 333-338. Shi X, Zhang F, Lv A, Wen Y, et al (2015). COL9A1 gene polymorphism is associated with Kashin-Beck disease in a northwest Chinese Han population. PLoS One 10: e0120365. Snelgrove TA, Peddle LJ, Stone C, Nofball F, et al (2005). Association of COL1A2, COL2A1 and COL9A1 and primary osteoarthritis in a founder population. Clin. Genet. 67: 359-360.  
L. Zhang, Li, D. Y., Liu, Y. P., Wang, Y., Zhao, X. L., and Zhu, Q., Genetic effect of the prolactin receptor gene on egg production traits in chickens, vol. 11, pp. 4307-4315, 2012.
Bole-Feysot C, Goffin V, Edery M, Binart N, et al. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19: 225-268. PMid:9626554   Cogburn LA, Wang X, Carre W, Rejto L, et al. (2003). Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci. 82: 939-951. PMid:12817449   Dunn IC, McEwan G, Okhubo T, Sharp PJ, et al. (1998). Genetic mapping of the chicken prolactin receptor gene: a candidate gene for the control of broodiness. Br. Poult. Sci. (39 Suppl): S23-S24. PMid:10188027   Elkins PA, Christinger HW, Sandowski Y, Sakal E, et al. (2000). Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat. Struct. Biol. 7: 808-815. PMid:10966654   Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130. PMid:9251140   Fleenor D, Arumugam R and Freemark M (2006). Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm. Res. 66: 101-110. PMid:16735796   Huang HY, Li SF, Zhao ZH, Liang Z, et al. (2011). Association of polymorphisms for nuclear receptor coactivator 1 gene with egg production traits in the maternal line of Shaobo hens. Br. Poult. Sci. 52: 328-332. PMid:21732878   Huang Q, Fu YX and Boerwinkle E (2003). Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum. Genet. 113: 253-257. PMid:12811538   Kanehisa M, Goto S, Kawashima S and Nakaya A (2002). The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46. PMid:11752249 PMCid:99091   Kelly PA, Binart N, Lucas B, Bouchard B, et al. (2001). Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front. Neuroendocrinol. 22: 140-145. PMid:11259135   Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208. PMid:15285513   Kmiec M and Terman A (2006). Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47: 139-141. PMid:16682755   Kuhn M, von Mering C, Campillos M, Jensen LJ, et al. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36: D684-D688. PMid:18084021 PMCid:2238848   Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383. PMid:16553263   Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67. PMid:11204716   Lu A, Hu X, Chen H, Dong Y, et al. (2011). Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem. Genet. 49: 177-189. PMid:21165768   Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36. PMid:17179412   Nicoll CS, Mayer GL and Russell SM (1986). Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr. Rev. 7: 169-203. PMid:3013605   Orita M, Suzuki Y, Sekiya T and Hayashi K (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874-879.   Ou JT, Tang SQ, Sun DX and Zhang Y (2009). Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88: 722-727. PMid:19276414   Rothschild MF and Soller M (1997). Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13-20.   Sambrook J, Fritsch E and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 931-957.   Serrano AB, Haro JGH, Hori-Oshima S, Espinosa AG, et al. (2009). Prolactin receptor (Prlr) gen polymorphism and associations with reproductive traits in pigs. J. Anim. Vet. Adv. 8: 469-475.   Sinha YN (1995). Structural variants of prolactin: occurrence and physiological significance. Endocr. Rev. 16: 354-369. PMid:7671851   Stephens JC, Schneider JA, Tanguay DA, Choi J, et al. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489-493. PMid:11452081   Thompson DL Jr, Hoffman R and DePew CL (1997). Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses. J. Anim. Sci. 75: 1092-1099. PMid:9110225   Xiao L-H, Chen S-Y, Zhao X-L, Zhu Q, et al. (2011). Association of cellular retinol-binding protein 2 (Crbp2) gene polymorphism with egg production in erlang mountainous chicken. J. Poult. Sci. 48: 162-167.   Xu HP, Shen X, Zhou M, Fang MX, et al. (2010). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17. PMid:20199684 PMCid:2848132   Xu HP, Zeng H, Zhang DX, Jia XL, et al. (2011). Polymorphisms associated with egg number at 300 days of age in chickens. Genet. Mol. Res. 10: 2279-2289. PMid:22002122   Zhang W, Collins A and Morton NE (2004). Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115: 157-164. PMid:15221450   Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427. PMid:17998950 PMCid:2043166