Publications
Found 11 results
Filters: Author is X.L. Zhao [Clear All Filters]
“Identification and characterization of SREBF2 expression and its association with chicken carcass traits”, vol. 15, p. -, 2016.
, “Identification and characterization of SREBF2 expression and its association with chicken carcass traits”, vol. 15, p. -, 2016.
, “Role of COL9A1 genetic polymorphisms in development of congenital talipes equinovarus in a Chinese population”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSFor their tremendous help, we thank the staff of the Fourth People’s Hospital of Shaanxi and the First Hospital of Yulin, who assisted us in collecting the blood samples. REFERENCESBrachvogel B, Zaucke F, Dave K, Norris EL, et al (2013). Comparative proteomic analysis of normal and collagen IX null mouse cartilage reveals altered extracellular matrix composition and novel components of the collagen IX interactome. J. Biol. Chem. 288: 13481-13492. http://dx.doi.org/10.1074/jbc.M112.444810 Cardy AH, Barker S, Chesney D, Sharp L, et al (2007). Pedigree analysis and epidemiological features of idiopathic congenital talipes equinovarus in the United Kingdom: a case-control study. BMC Musculoskelet. Disord. 8: 62. http://dx.doi.org/10.1186/1471-2474-8-62 Cardy AH, Sharp L, Torrance N, Hennekam RC, et al (2011). Is there evidence for aetiologically distinct subgroups of idiopathic congenital talipes equinovarus? A case-only study and pedigree analysis. PLoS One 6: e17895. http://dx.doi.org/10.1371/journal.pone.0017895 Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, et al (2001). A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am. J. Hum. Genet. 69: 969-980. http://dx.doi.org/10.1086/324023 Itoh T, Shirahama S, Nakashima E, Maeda K, et al (2006). Comprehensive screening of multiple epiphyseal dysplasia mutations in Japanese population. Am. J. Med. Genet. A. 140: 1280-1284. http://dx.doi.org/10.1002/ajmg.a.31292 Jakkula E, Melkoniemi M, Kiviranta I, Lohiniva J, et al (2005). The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis Cartilage 13: 497-507. http://dx.doi.org/10.1016/j.joca.2005.02.005 Janeczko Ł, Janeczko M, Chrzanowski R, Zieliński G, et al (2014). The role of polymorphisms of genes encoding collagen IX and XI in lumbar disc disease. Neurol. Neurochir. Pol. 48: 60-62. http://dx.doi.org/10.1016/j.pjnns.2013.04.001 Kancherla V, Romitti PA, Caspers KM, Puzhankara S, et al (2010). Epidemiology of congenital idiopathic talipes equinovarus in Iowa, 1997-2005. Am. J. Med. Genet. A. 152A: 1695-1700. http://dx.doi.org/10.1002/ajmg.a.33481 Liu LY, Jin CL, Cao DH, Zhao N, et al (2007). [Analysis of association between COL9A1 gene and idiopathic congenital talipes equinovarus]. Yi Chuan 29: 427-432. http://dx.doi.org/10.1360/yc-007-0427 Liu LY, Jin CL, Jiang L, Lin CK, et al (2011). [Expression of COL9A1 gene and its polymorphism in children with idiopathic congenital talipes equinovarus]. Zhongguo Dang Dai Er Ke Za Zhi 13: 478-481. Parsons P, Gilbert SJ, Vaughan-Thomas A, Sorrell DA, et al (2011). Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage. J. Biol. Chem. 286: 34986-34997. http://dx.doi.org/10.1074/jbc.M111.238188 Posey KL, Hankenson K, Veerisetty AC, Bornstein P, et al (2008). Skeletal abnormalities in mice lacking extracellular matrix proteins, thrombospondin-1, thrombospondin-3, thrombospondin-5, and type IX collagen. Am. J. Pathol. 172: 1664-1674. http://dx.doi.org/10.2353/ajpath.2008.071094 Sahin O, Yildirim C, Akgun RC, Haberal B, et al (2013). Consanguineous marriage and increased risk of idiopathic congenital talipes equinovarus: a case-control study in a rural area. J. Pediatr. Orthop. 33: 333-338. http://dx.doi.org/10.1097/BPO.0b013e3182784af4 Shi X, Zhang F, Lv A, Wen Y, et al (2015). COL9A1 gene polymorphism is associated with Kashin-Beck disease in a northwest Chinese Han population. PLoS One 10: e0120365. http://dx.doi.org/10.1371/journal.pone.0120365 Snelgrove TA, Peddle LJ, Stone C, Nofball F, et al (2005). Association of COL1A2, COL2A1 and COL9A1 and primary osteoarthritis in a founder population. Clin. Genet. 67: 359-360. http://dx.doi.org/10.1111/j.1399-0004.2005.00399.x
“Confined housing system increased abdominal and subcutaneous fat deposition and gene expressions of carbohydrate response element-binding protein and sterol regulatory element-binding protein 1 in chicken”, vol. 14, pp. 1220-1228, 2015.
, “Effects of sex and age on chicken TBC1D1 gene mRNA expression”, vol. 14, pp. 7704-7714, 2015.
, “Expression of β-defensins in intestines of chickens injected with vitamin D3 and lipopolysaccharide”, vol. 14, pp. 3330-3337, 2015.
, “FOXO1 is a tumor suppressor in cervical cancer”, vol. 14, pp. 6605-6616, 2015.
, “Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls”, vol. 14, pp. 2572-2581, 2015.
, “Association of polymorphisms of the xeroderma pigmentosum complementation group F gene with increased glioma risk”, vol. 13, pp. 3826-3831, 2014.
, “Interaction of six candidate genes in essential hypertension”, vol. 13, pp. 8385-8395, 2014.
, “Genetic effect of the prolactin receptor gene on egg production traits in chickens”, vol. 11, pp. 4307-4315, 2012.
, Bole-Feysot C, Goffin V, Edery M, Binart N, et al. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19: 225-268.
http://dx.doi.org/10.1210/er.19.3.225
PMid:9626554
Cogburn LA, Wang X, Carre W, Rejto L, et al. (2003). Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci. 82: 939-951.
PMid:12817449
Dunn IC, McEwan G, Okhubo T, Sharp PJ, et al. (1998). Genetic mapping of the chicken prolactin receptor gene: a candidate gene for the control of broodiness. Br. Poult. Sci. (39 Suppl): S23-S24.
http://dx.doi.org/10.1080/00071669888160
PMid:10188027
Elkins PA, Christinger HW, Sandowski Y, Sakal E, et al. (2000). Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat. Struct. Biol. 7: 808-815.
http://dx.doi.org/10.1038/79047
PMid:10966654
Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130.
PMid:9251140
Fleenor D, Arumugam R and Freemark M (2006). Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm. Res. 66: 101-110.
http://dx.doi.org/10.1159/000093667
PMid:16735796
Huang HY, Li SF, Zhao ZH, Liang Z, et al. (2011). Association of polymorphisms for nuclear receptor coactivator 1 gene with egg production traits in the maternal line of Shaobo hens. Br. Poult. Sci. 52: 328-332.
http://dx.doi.org/10.1080/00071668.2011.577057
PMid:21732878
Huang Q, Fu YX and Boerwinkle E (2003). Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum. Genet. 113: 253-257.
http://dx.doi.org/10.1007/s00439-003-0965-x
PMid:12811538
Kanehisa M, Goto S, Kawashima S and Nakaya A (2002). The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46.
http://dx.doi.org/10.1093/nar/30.1.42
PMid:11752249 PMCid:99091
Kelly PA, Binart N, Lucas B, Bouchard B, et al. (2001). Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front. Neuroendocrinol. 22: 140-145.
http://dx.doi.org/10.1006/frne.2001.0212
PMid:11259135
Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208.
PMid:15285513
Kmiec M and Terman A (2006). Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47: 139-141.
http://dx.doi.org/10.1007/BF03194613
PMid:16682755
Kuhn M, von Mering C, Campillos M, Jensen LJ, et al. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36: D684-D688.
http://dx.doi.org/10.1093/nar/gkm795
PMid:18084021 PMCid:2238848
Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383.
PMid:16553263
Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67.
PMid:11204716
Lu A, Hu X, Chen H, Dong Y, et al. (2011). Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem. Genet. 49: 177-189.
http://dx.doi.org/10.1007/s10528-010-9397-1
PMid:21165768
Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36.
PMid:17179412
Nicoll CS, Mayer GL and Russell SM (1986). Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr. Rev. 7: 169-203.
http://dx.doi.org/10.1210/edrv-7-2-169
PMid:3013605
Orita M, Suzuki Y, Sekiya T and Hayashi K (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874-879.
http://dx.doi.org/10.1016/0888-7543(89)90129-8
Ou JT, Tang SQ, Sun DX and Zhang Y (2009). Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88: 722-727.
http://dx.doi.org/10.3382/ps.2008-00497
PMid:19276414
Rothschild MF and Soller M (1997). Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13-20.
Sambrook J, Fritsch E and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 931-957.
Serrano AB, Haro JGH, Hori-Oshima S, Espinosa AG, et al. (2009). Prolactin receptor (Prlr) gen polymorphism and associations with reproductive traits in pigs. J. Anim. Vet. Adv. 8: 469-475.
Sinha YN (1995). Structural variants of prolactin: occurrence and physiological significance. Endocr. Rev. 16: 354-369.
PMid:7671851
Stephens JC, Schneider JA, Tanguay DA, Choi J, et al. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489-493.
http://dx.doi.org/10.1126/science.1059431
PMid:11452081
Thompson DL Jr, Hoffman R and DePew CL (1997). Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses. J. Anim. Sci. 75: 1092-1099.
PMid:9110225
Xiao L-H, Chen S-Y, Zhao X-L, Zhu Q, et al. (2011). Association of cellular retinol-binding protein 2 (Crbp2) gene polymorphism with egg production in erlang mountainous chicken. J. Poult. Sci. 48: 162-167.
http://dx.doi.org/10.2141/jpsa.010099
Xu HP, Shen X, Zhou M, Fang MX, et al. (2010). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17.
http://dx.doi.org/10.1186/1471-2156-11-17
PMid:20199684 PMCid:2848132
Xu HP, Zeng H, Zhang DX, Jia XL, et al. (2011). Polymorphisms associated with egg number at 300 days of age in chickens. Genet. Mol. Res. 10: 2279-2289.
http://dx.doi.org/10.4238/2011.October.3.5
PMid:22002122
Zhang W, Collins A and Morton NE (2004). Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115: 157-164.
http://dx.doi.org/10.1007/s00439-004-1122-x
PMid:15221450
Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427.
http://dx.doi.org/10.7150/ijbs.3.420
PMid:17998950 PMCid:2043166