Publications
Found 8 results
Filters: Author is Z.L. Wang [Clear All Filters]
“Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
We thank the anonymous reviewers for reviewing this manuscript.
REFERENCES
Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011
Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327
Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043
Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042
Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38
Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929.
Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088.
Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058
Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038
Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027
Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261
Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004
Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108
Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z
Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z
Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2
Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377
Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046
Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9
Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc
Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021
Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306
Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
“Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
We thank the anonymous reviewers for reviewing this manuscript.
REFERENCES
Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011
Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327
Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043
Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042
Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38
Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929.
Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088.
Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058
Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038
Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027
Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261
Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004
Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108
Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z
Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z
Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2
Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377
Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046
Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9
Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc
Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021
Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306
Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
“ApoE and S-100 expression and its significance in the brain tissue of rats with focal contusion”, vol. 14, pp. 19275-19281, 2015.
, “Effect of single nucleotide polymorphisms in the ATP-binding cassette B1 gene on the clinical outcome of traumatic brain injury”, vol. 14, pp. 10948-10953, 2015.
, “Expression of macrophage migration-inhibitory factor in duodenal ulcer and its relation to Helicobacter pylori infection”, vol. 14, pp. 13860-13867, 2015.
, “Genetic diversity and variability in populations of the white wax insect Ericerus pela, assessed by AFLP analysis”, vol. 14, pp. 17820-17827, 2015.
, ,
“Damaging effects of water-borne cadmium chloride on DNA of lung cells of immature mice”, vol. 11, pp. 4323-4329, 2012.
, Burger J (2008). Assessment and management of risk to wildlife from cadmium. Sci. Total Environ. 389: 37-45.
http://dx.doi.org/10.1016/j.scitotenv.2007.08.037
PMid:17910979
Calderón J, Ortiz-Pérez D, Yá-ez L and Díaz-Barriga F (2003). Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol. Environ. Saf 56: 93-103.
http://dx.doi.org/10.1016/S0147-6513(03)00053-8
Collins AR (2004). The comet assay for DNA damage repair. Mol. Biotechnol. 26: 249-261.
http://dx.doi.org/10.1385/MB:26:3:249
Godt J, Scheidig F, Grosse-Siestrup C, Esche V, et al. (2006). The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1: 22.
http://dx.doi.org/10.1186/1745-6673-1-22
PMid:16961932 PMCid:1578573
Kostial K, Kello D, Jugo S, Rabar I, et al. (1978). Influence of age on metal metabolism and toxicity. Environ. Health Perspect. 25: 81-86.
http://dx.doi.org/10.1289/ehp.782581
PMid:720306 PMCid:1637177
Kundu S, Sengupta S, Chatterjee S, Mitra S, et al. (2009). Cadmium induces lung inflammation independent of lung cell proliferation: a molecular approach. J. Inflamm. 6: 19.
http://dx.doi.org/10.1186/1476-9255-6-19
PMid:19523218 PMCid:2702298
Lag M, Westly S, Lerstad T, Bjornsrud C, et al. (2002). Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biol. Toxicol. 18: 29-42.
http://dx.doi.org/10.1023/A:1014467112463
PMid:11991084
Mikhailova MV, Littlefield NA, Hass BS, Poirier LA, et al. (1997). Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells. Cancer Lett. 115: 141-148.
http://dx.doi.org/10.1016/S0304-3835(97)04720-4
Oberdörster G (1992). Pulmonary deposition, clearance and effects of inhaled soluble and insoluble cadmium compounds. IARC Sci. Publ. 189-204.
PMid:1303941
Pei XC and Xu ZF (2003). Chronic toxicity and remote effect of cadmium. Chin. J. Environ. Occup. Med. 20: 58-61.
Potts RJ, Bespalov IA, Wallace SS, Melamede RJ, et al. (2001). Inhibition of oxidative DNA repair in cadmium-adapted alveolar epithelial cells and the potential involvement of metallothionein. Toxicology 161: 25-38.
http://dx.doi.org/10.1016/S0300-483X(00)00419-4
Prieto González EA, Ortega Soler M, Fuchs AG, Brito R, et al. (2011). Differences in DNA repair kinetics of lesions induced by hydrogen peroxide in lymphocytes from premenopausal breast cancer patients and healthy Women resident in Great Buenos Aires. J. Med. Med. Sci. 2: 1036-1046.
Seidal K, Jorgensen N, Elinder CG, Sjogren B, et al. (1993). Fatal cadmium-induced pneumonitis. Scand. J. Work Environ. Health 19: 429-431.
http://dx.doi.org/10.5271/sjweh.1450
PMid:8153597
Sekihashi K, Yamamoto A, Matsumura Y, Ueno S, et al. (2002). Comparative investigation of multiple organs of mice and rats in the comet assay. Mutat. Res. 517: 53-75.
http://dx.doi.org/10.1016/S1383-5718(02)00034-7
Singh NP, McCoy MT, Tice RR and Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184-191.
http://dx.doi.org/10.1016/0014-4827(88)90265-0
Takaki A, Jimi S, Segawa M, Hisano S, et al. (2004). Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203: 145-154.
http://dx.doi.org/10.1016/j.tox.2004.06.005
PMid:15363590
Yang XF, Ge YM, Jiang JQ, Xu ZY, et al. (2012). Acute toxic effect of cadmium chloride in mice. Chin. J. Vet. Sci. 32: 467-471.
Yu RA (2000). Cadmium and DNA damage, oncogene expression as well as cell apoptosis. Overseas Med. Health 27: 359-363.