Publications

Found 3 results
Filters: Author is J.Q. Jiang  [Clear All Filters]
2016
Q. Lu, Li, Z. G., Zhou, N., Gong, Z. G., Jiang, J. Q., Chen, Z. N., Jiang, Q. J., Peng, Y., and Ding, S. F., Impact of citrate pretreatment on ventricular arrhythmia and myocardial capase-3 expression in ischemia/reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Natural Science Fundation of Hubei Province (#2014cfa066). REFERENCESAntzelevitch C, Burashnikov A, Sicouri S, Belardinelli L, et al (2011). Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm 8: 1281-1290. http://dx.doi.org/10.1016/j.hrthm.2011.03.045 Barrabés JA, Inserte J, Agulló L, Rodríguez-Sinovas A, et al (2015). Effects of the selective stretch-activated channel blocker GsMTx4 on stretch-induced changes in refractoriness in isolated rat hearts and on ventricular premature beats and arrhythmias after coronary occlusion in swine. PLoS One 10: e0125753. http://dx.doi.org/10.1371/journal.pone.0125753 Bell JR, Raaijmakers AJ, Curl CL, Reichelt ME, et al (2015). Cardiac CaMKIIδ splice variants exhibit target signaling specificity and confer sex-selective arrhythmogenic actions in the ischemic-reperfused heart. Int. J. Cardiol. 181: 288-296. http://dx.doi.org/10.1016/j.ijcard.2014.11.159 Diez ER, Prado NJ, Carrión AM, Petrich ER, et al (2013). Electrophysiological effects of tamoxifen: mechanism of protection against reperfusion arrhythmias in isolated rat hearts. J. Cardiovasc. Pharmacol. 62: 184-191. http://dx.doi.org/10.1097/FJC.0b013e318295b611 Dow J, Bhandari A, Kloner RA, et al (2009). The mechanism by which ischemic postconditioning reduces reperfusion arrhythmias in rats remains elusive. J. Cardiovasc. Pharmacol. Ther. 14: 99-103. http://dx.doi.org/10.1177/1074248408329606 Fanton Y, Robic B, Rummens JL, Daniëls A, et al (2015). Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: A new tool for cardiac repair after MI. Int. J. Cardiol. 201: 10-19. http://dx.doi.org/10.1016/j.ijcard.2015.07.066 Gonano LA, Morell M, Burgos JI, Dulce RA, et al (2014). Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect. Cardiovasc. Res. 104: 456-466. http://dx.doi.org/10.1093/cvr/cvu230 Gonca E, Kurt Ç, et al (2015). Cardioprotective effect of Thymoquinone: A constituent of Nigella sativa L., against myocardial ischemia/reperfusion injury and ventricular arrhythmias in anaesthetized rats. Pak. J. Pharm. Sci. 28: 1267-1273. Horvat D, Vincelj J, et al (2015). Impact of reperfusion therapy and infarct localization on frequency of premature ventricular beats in acute myocardial infarction. Med Glas (Zenica) 12: 139-143. Huang B, Wang X, Yang Y, Zhu J, et al (2015). Association of admission glycaemia with high grade atrioventricular block in ST-segment elevation myocardial infarction undergoing reperfusion therapy: an observational study. Medicine (Baltimore) 94: e1167. http://dx.doi.org/10.1097/MD.0000000000001167 Kloner RA, Dow JS, Bhandari A, et al (2011). The antianginal agent ranolazine is a potent antiarrhythmic agent that reduces ventricular arrhythmias: through a mechanism favoring inhibition of late sodium channel. Cardiovasc. Ther. 29: e36-e41. http://dx.doi.org/10.1111/j.1755-5922.2010.00203.x Liu T, O’Rourke B, et al (2013). Regulation of the Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes. J. Biol. Chem. 288: 31984-31992. http://dx.doi.org/10.1074/jbc.M113.496588 Liu X, Jing G, Bai J, Yuan H, et al (2014). [Effect of sufentanil preconditioning on myocardial P-Akt expression in rats during myocardial ischemia-reperfusion]. Nan Fang Yi Ke Da Xue Xue Bao 34: 335-340. Miskolczi G, Gönczi M, Kovács M, Seprényi G, et al (2015). Further evidence for the role of gap junctions in the delayed antiarrhythmic effect of cardiac pacing. Can. J. Physiol. Pharmacol. 93: 545-553. http://dx.doi.org/10.1139/cjpp-2014-0518 Neckár J, Borchert GH, Hlousková P, Mícová P, et al (2013). Brief daily episode of normoxia inhibits cardioprotection conferred by chronic continuous hypoxia. Role of oxidative stress and BKCa channels. Curr. Pharm. Des. 19: 6880-6889. http://dx.doi.org/10.2174/138161281939131127115154 Patil KD, Halperin HR, Becker LB, et al (2015). Cardiac arrest: resuscitation and reperfusion. Circ. Res. 116: 2041-2049. http://dx.doi.org/10.1161/CIRCRESAHA.116.304495 Shekarforoush S, Fatahi Z, Safari F, et al (2016). The effects of pentobarbital, ketamine-pentobarbital and ketamine-xylazine anesthesia in a rat myocardial ischemic reperfusion injury model. Lab. Anim. 50: 179-184. http://dx.doi.org/10.1177/0023677215597136 Sun X, Zhong J, Wang D, Xu J, et al (2014). Increasing glutamate promotes ischemia-reperfusion-induced ventricular arrhythmias in rats in vivo. Pharmacology 93: 4-9. http://dx.doi.org/10.1159/000356311 Szepesi J, Acsai K, Sebok Z, Prorok J, et al (2015). Comparison of the efficiency of Na+/Ca2+ exchanger or Na+/H+ exchanger inhibition and their combination in reducing coronary reperfusion-induced arrhythmias. J. Physiol. Pharmacol. 66: 215-226. Talukder MA, Kalyanasundaram A, Zhao X, Zuo L, et al (2007). Expression of SERCA isoform with faster Ca2+ transport properties improves postischemic cardiac function and Ca2+ handling and decreases myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 293: H2418-H2428. http://dx.doi.org/10.1152/ajpheart.00663.2007 Tang X, Liu J, Dong W, Li P, et al (2013). The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med. 2013: 820695. http://dx.doi.org/10.1155/2013/820695 Wu YN, Yu H, Zhu XH, Yuan HJ, et al (2011). Noninvasive delayed limb ischemic preconditioning attenuates myocardial ischemia-reperfusion injury in rats by a mitochondrial K(ATP) channel-dependent mechanism. Physiol. Res. 60: 271-279. Wu HJ, Yang JY, Jin M, Wang SQ, et al (2015). Glycyrrhetinic Acid protects the heart from ischemia/reperfusion injury by attenuating the susceptibility and incidence of fatal ventricular arrhythmia during the reperfusion period in the rat hearts. Cell. Physiol. Biochem. 36: 741-752. http://dx.doi.org/10.1159/000430134  
2012
X. F. Yang, Ge, Y. M., Zhang, H. T., Ning, H. M., Jiang, J. Q., Qi, Y. H., and Wang, Z. L., Damaging effects of water-borne cadmium chloride on DNA of lung cells of immature mice, vol. 11, pp. 4323-4329, 2012.
Burger J (2008). Assessment and management of risk to wildlife from cadmium. Sci. Total Environ. 389: 37-45. http://dx.doi.org/10.1016/j.scitotenv.2007.08.037 PMid:17910979   Calderón J, Ortiz-Pérez D, Yá-ez L and Díaz-Barriga F (2003). Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol. Environ. Saf 56: 93-103. http://dx.doi.org/10.1016/S0147-6513(03)00053-8   Collins AR (2004). The comet assay for DNA damage repair. Mol. Biotechnol. 26: 249-261. http://dx.doi.org/10.1385/MB:26:3:249   Godt J, Scheidig F, Grosse-Siestrup C, Esche V, et al. (2006). The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1: 22. http://dx.doi.org/10.1186/1745-6673-1-22 PMid:16961932 PMCid:1578573   Kostial K, Kello D, Jugo S, Rabar I, et al. (1978). Influence of age on metal metabolism and toxicity. Environ. Health Perspect. 25: 81-86. http://dx.doi.org/10.1289/ehp.782581 PMid:720306 PMCid:1637177   Kundu S, Sengupta S, Chatterjee S, Mitra S, et al. (2009). Cadmium induces lung inflammation independent of lung cell proliferation: a molecular approach. J. Inflamm. 6: 19. http://dx.doi.org/10.1186/1476-9255-6-19 PMid:19523218 PMCid:2702298   Lag M, Westly S, Lerstad T, Bjornsrud C, et al. (2002). Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biol. Toxicol. 18: 29-42. http://dx.doi.org/10.1023/A:1014467112463 PMid:11991084   Mikhailova MV, Littlefield NA, Hass BS, Poirier LA, et al. (1997). Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells. Cancer Lett. 115: 141-148. http://dx.doi.org/10.1016/S0304-3835(97)04720-4   Oberdörster G (1992). Pulmonary deposition, clearance and effects of inhaled soluble and insoluble cadmium compounds. IARC Sci. Publ. 189-204. PMid:1303941   Pei XC and Xu ZF (2003). Chronic toxicity and remote effect of cadmium. Chin. J. Environ. Occup. Med. 20: 58-61.   Potts RJ, Bespalov IA, Wallace SS, Melamede RJ, et al. (2001). Inhibition of oxidative DNA repair in cadmium-adapted alveolar epithelial cells and the potential involvement of metallothionein. Toxicology 161: 25-38. http://dx.doi.org/10.1016/S0300-483X(00)00419-4   Prieto González EA, Ortega Soler M, Fuchs AG, Brito R, et al. (2011). Differences in DNA repair kinetics of lesions induced by hydrogen peroxide in lymphocytes from premenopausal breast cancer patients and healthy Women resident in Great Buenos Aires. J. Med. Med. Sci. 2: 1036-1046.   Seidal K, Jorgensen N, Elinder CG, Sjogren B, et al. (1993). Fatal cadmium-induced pneumonitis. Scand. J. Work Environ. Health 19: 429-431. http://dx.doi.org/10.5271/sjweh.1450 PMid:8153597   Sekihashi K, Yamamoto A, Matsumura Y, Ueno S, et al. (2002). Comparative investigation of multiple organs of mice and rats in the comet assay. Mutat. Res. 517: 53-75. http://dx.doi.org/10.1016/S1383-5718(02)00034-7   Singh NP, McCoy MT, Tice RR and Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184-191. http://dx.doi.org/10.1016/0014-4827(88)90265-0   Takaki A, Jimi S, Segawa M, Hisano S, et al. (2004). Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203: 145-154. http://dx.doi.org/10.1016/j.tox.2004.06.005 PMid:15363590   Yang XF, Ge YM, Jiang JQ, Xu ZY, et al. (2012). Acute toxic effect of cadmium chloride in mice. Chin. J. Vet. Sci. 32: 467-471.   Yu RA (2000). Cadmium and DNA damage, oncogene expression as well as cell apoptosis. Overseas Med. Health 27: 359-363.