Publications

Found 17 results
Filters: Author is X.H. Wang  [Clear All Filters]
2016
X. H. Wang, Shi, H. P., Li, F. J., Wang, X. H., Shi, H. P., and Li, F. J., Association between Toll-like receptor 9 gene polymorphisms and risk of bacterial meningitis in a Chinese population, vol. 15, p. -, 2016.
X. H. Wang, Shi, H. P., Li, F. J., Wang, X. H., Shi, H. P., and Li, F. J., Association between Toll-like receptor 9 gene polymorphisms and risk of bacterial meningitis in a Chinese population, vol. 15, p. -, 2016.
X. H. Wang, Du, H. W., Guo, X. H., Wang, S. W., Zhou, R. B., Li, Y., Li, Z. B., Zhao, Y. S., and Zhu, Q. L., Rehmannia glutinosa oligosaccharide induces differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAntonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Charokopos N, et al (2008). Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thorac. Cardiovasc. Surg. 56: 77-82. http://dx.doi.org/10.1055/s-2007-989328 Borodovsky A, Salmasi V, Turcan S, Fabius AW, et al (2013). 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 4: 1737-1747. http://dx.doi.org/10.18632/oncotarget.1408 Chen XY, Wang RF, Liu B, et al (2015). An update on oligosaccharides and their esters from traditional chinese medicines: chemical structures and biological activities. Evid. Based Complement. Alternat. Med. 2015: 512675. http://dx.doi.org/10.1155/2015/512675 De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, et al (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr. Mol. Med. 12: 574-591. http://dx.doi.org/10.2174/156652412800619950 Deans RJ, Moseley AB, et al (2000). Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875-884. http://dx.doi.org/10.1016/S0301-472X(00)00482-3 Dey BR, Chung SS, Spitzer TR, Zheng H, et al (2010). Cardiac transplantation followed by dose-intensive melphalan and autologous stem-cell transplantation for light chain amyloidosis and heart failure. Transplantation 90: 905-911. http://dx.doi.org/10.1097/TP.0b013e3181f10edb Ge X, Bai C, Yang J, Lou G, et al (2013). Intratracheal transplantation of bone marrow-derived mesenchymal stem cells reduced airway inflammation and up-regulated CD4+CD25+ regulatory T cells in asthmatic mouse. Cell Biol. Int. 37: 675-686. http://dx.doi.org/10.1002/cbin.10084 Lai PK, To MH, Lau KM, Liu CL, et al (2012). Stachyose: One of the active fibroblast-proliferating components in the root of Rehmanniae Radix (dì huáng). J. Tradit. Complement. Med. 2: 227-234. http://dx.doi.org/10.1016/S2225-4110(16)30104-3 Makino S, Fukuda K, Miyoshi S, Konishi F, et al (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697-705. http://dx.doi.org/10.1172/JCI5298 Manferdini C, Maumus M, Gabusi E, Piacentini A, et al (2013). Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 65: 1271-1281. http://dx.doi.org/10.1002/art.37908 Nagaya N, Kitamura S, et al (2008). [Regenerative medicine for heart failure]. Nihon Rinsho 66: 978-983. Nagaya N, Kangawa K, Itoh T, Iwase T, et al (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112: 1128-1135. http://dx.doi.org/10.1161/CIRCULATIONAHA.104.500447 Park C, So HS, Kim SJ, Youn MJ, et al (2006). Samul extract protects against the H2O2-induced apoptosis of H9c2 cardiomyoblasts via activation of extracellular regulated kinases (Erk) 1/2. Am. J. Chin. Med. 34: 695-706. http://dx.doi.org/10.1142/S0192415X06004211 Park WH, Hong MY, Chung KH, Kim HM, et al (2005). Effects of traditional herbal medicine, Hwaotang, on atherosclerosis using the spontaneous familial hypercholesterolemia model, Kurosawa and Kusanagi-hypercholesterolemic rabbits and the venous thrombosis rats. Phytother. Res. 19: 846-853. http://dx.doi.org/10.1002/ptr.1700 Ramasamy R, Tong CK, Seow HF, Vidyadaran S, et al (2008). The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell. Immunol. 251: 131-136. http://dx.doi.org/10.1016/j.cellimm.2008.04.009 Richardson JD, Bertaso AG, Psaltis PJ, Frost L, et al (2013). Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J. Card. Fail. 19: 342-353. http://dx.doi.org/10.1016/j.cardfail.2013.03.011 Selem SM, Kaushal S, Hare JM, et al (2013). Stem cell therapy for pediatric dilated cardiomyopathy. Curr. Cardiol. Rep. 15: 369. http://dx.doi.org/10.1007/s11886-013-0369-z Tomita S, Li RK, Weisel RD, Mickle DA, et al (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 (Suppl): II247-II256. http://dx.doi.org/10.1161/01.CIR.100.suppl_2.II-247 Uccelli A, Moretta L, Pistoia V, et al (2006). Immunoregulatory function of mesenchymal stem cells. Eur. J. Immunol. 36: 2566-2573. http://dx.doi.org/10.1002/eji.200636416 Yokozawa T, Kim HY, Yamabe N, et al (2004). Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract. Am. J. Chin. Med. 32: 829-839. http://dx.doi.org/10.1142/S0192415X04002442 Yu HH, Kim YH, Jung SY, Shin MK, et al (2006a). Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells. Am. J. Chin. Med. 34: 1083-1093. http://dx.doi.org/10.1142/S0192415X06004545 Yu HH, Seo SJ, Kim YH, Lee HY, et al (2006b). Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals. J. Ethnopharmacol. 107: 383-388. http://dx.doi.org/10.1016/j.jep.2006.03.024 Yue WM, Liu W, Bi YW, He XP, et al (2008). Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 17: 785-793. http://dx.doi.org/10.1089/scd.2007.0243 Zhang Y, Wang Y, Wang L, Zhang Y, et al (2012). Effects of Rehmannia glutinosa oligosaccharide on human adipose-derived mesenchymal stem cells in vitro. Life Sci. 91: 1323-1327. http://dx.doi.org/10.1016/j.lfs.2012.10.015  
W. Z. Li, Wang, X. H., Zhang, H. X., Mao, S. M., Zhao, C. Z., Li, W. Z., Wang, X. H., Zhang, H. X., Mao, S. M., Zhao, C. Z., Li, W. Z., Wang, X. H., Zhang, H. X., Mao, S. M., and Zhao, C. Z., Protective effect of the n-butanol Toona sinensis seed extract on diabetic nephropathy rat kidneys, vol. 15, p. -, 2016.
W. Z. Li, Wang, X. H., Zhang, H. X., Mao, S. M., Zhao, C. Z., Li, W. Z., Wang, X. H., Zhang, H. X., Mao, S. M., Zhao, C. Z., Li, W. Z., Wang, X. H., Zhang, H. X., Mao, S. M., and Zhao, C. Z., Protective effect of the n-butanol Toona sinensis seed extract on diabetic nephropathy rat kidneys, vol. 15, p. -, 2016.
W. Z. Li, Wang, X. H., Zhang, H. X., Mao, S. M., Zhao, C. Z., Li, W. Z., Wang, X. H., Zhang, H. X., Mao, S. M., Zhao, C. Z., Li, W. Z., Wang, X. H., Zhang, H. X., Mao, S. M., and Zhao, C. Z., Protective effect of the n-butanol Toona sinensis seed extract on diabetic nephropathy rat kidneys, vol. 15, p. -, 2016.
2012
S. G. Li, Li, W. Q., Wang, J. K., Zhang, H. Y., Li, W., Zhang, P., Wang, X. H., Zhang, H. X., Gu, J. P., and Gu, R. J., Association of the genes for tumor necrosis factor-α and myelin basic protein with delayed encephalopathy after acute carbon monoxide poisoning, vol. 11, pp. 4479-4486, 2012.
Australia and New Zealand Multiple Sclerosis Genetics Consortium (2009). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41: 824-828. http://dx.doi.org/10.1038/ng.396 PMid:19525955   Bai XF, Li O, Zhou Q, Zhang H, et al. (2004). CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J. Exp. Med. 200: 447-458. http://dx.doi.org/10.1084/jem.20040131 PMid:15314074 PMCid:2211938   González S, Rodrigo L, Martinez-Borra J, Lopez-Vazquez A, et al. (2003). TNF-α -308A promoter polymorphism is associated with enhanced TNF-α production and inflammatory activity in Crohn's patients with fistulizing disease. Am. J. Gastroenterol. 98: 1101-1106. PMid:12809834   Gu RJ, Lu H, Hu SJ and Zhang XM (2001). The change of the CSF Ig and TNF-α in patients with delayed encephalopathy after acute carbon monoxide poisoning. J. Apoplexy Nervdus Dis. 18: 173-174.   Gu RJ, Chen Z, Zhang XM, Song JG, et al. (2002). The determination of neuron specific enolase and myelin basic protein in Geriatric patients with delayed encephalopathy after acute carbon monoxide poisoning. Chin. J. Geriatr. 21: 60-61.   Gu RJ, Wang XH, Zhang P, Lu H, et al. (2005). Change of the serum interleukin 6 in patients with delayed encephalopathy after acute carbon monoxide poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 23: 461-462. PMid:16405788   Guerini FR, Ferrante P, Losciale L, Caputo D, et al. (2003). Myelin basic protein gene is associated with MS in DR4- and DR5-positive Italians and Russians. Neurology 61: 520-526. http://dx.doi.org/10.1212/01.WNL.0000079372.54703.A8 PMid:12939427   Hafler DA, Compston A, Sawcer S, Lander ES, et al. (2007). Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357: 851-862. http://dx.doi.org/10.1056/NEJMoa073493 PMid:17660530   Jia A, Gong J, Li YC, Zuo XM, et al. (2009). Correlation of polymorphisms of the IL-1 promoter region and tumor necrosis factor-α gene with susceptibility of non-cardiac gastric cancer in a Han nationality of Shaanxi Chinese population. J. Xi an Jiaotong Univ. 1: 70-73.   Kamijo Y, Soma K and Ide T (2007). Recurrent myelin basic protein elevation in cerebrospinal fluid as a predictive marker of delayed encephalopathy after carbon monoxide poisoning. Am. J. Emerg. Med. 25: 483-485. http://dx.doi.org/10.1016/j.ajem.2006.06.019 PMid:17499675   Kroeger KM, Steer JH, Joyce DA and Abraham LJ (2000). Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 12: 110-119. http://dx.doi.org/10.1006/cyto.1999.0529 PMid:10671295   Lindholm E, Bakhtadze E, Cilio C, Agardh E, et al. (2008). Association between LTA, TNF and AGER polymorphisms and late diabetic complications. PLoS One 3: e2546. http://dx.doi.org/10.1371/journal.pone.0002546 PMid:18575614 PMCid:2429972   Lu MC, Yang KL, Tung CH, Huang KY, et al. (2008). Higher LPS-stimulated TNF-α mRNA levels in peripheral blood mononuclear cells from Chinese ankylosing spondylitis patients with -308G/A polymorphism in promoter region of tumor necrosis factor: association with distinct A33/B58/Cw10 haplotypes. Rheumatol. Int. 29: 189-195. http://dx.doi.org/10.1007/s00296-008-0671-z PMid:18719920   Lv ZQ and Sun B (2008). Association of TNF-α gene polymorphism with Graves ophthalmopathy. J. Shanxi Med. Univ. 39: 633-636.   Pihlaja H, Rantamaki T, Wikstrom J, Sumelahti ML, et al. (2003). Linkage disequilibrium between the MBP tetranucleotide repeat and multiple sclerosis is restricted to a geographically defined subpopulation in Finland. Genes Immun. 4: 138-146. http://dx.doi.org/10.1038/sj.gene.6363943 PMid:12618862   Pu J and Zeng WY (2009). Relationship among TNF-α gene promoter -308 site polymorphism, the levels of maternal serum TNF-α, and the mRNA expression placental TNF-α in preterm labor. Sichuan Da Xue Xue Bao Yi Xue Ban 40: 77-80. PMid:19292050   Sarial S, Shokrgozar MA, Amirzargar A, Shokri F, et al. (2008). IL-1, IL-1R and TNF-α gene polymorphisms in Iranian patients with multiple sclerosis. Iran J. Allergy Asthma Immunol. 7: 37-40. PMid:18322311   Tarkowski E, Liljeroth AM, Nilsson A, Ricksten A, et al. (2000). TNF gene polymorphism and its relation to intracerebral production of TNF-α and TNF-β in AD. Neurology 54: 2077-2081. http://dx.doi.org/10.1212/WNL.54.11.2077 PMid:10851366   Thom SR, Bhopale VM, Fisher D, Zhang J, et al. (2004). Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc. Natl. Acad. Sci. U. S. A. 101: 13660-13665. http://dx.doi.org/10.1073/pnas.0405642101 PMid:15342916 PMCid:518809   Ye RG and Lu ZY (2004). The Internal Medicine. 6th edn. People's Medical Publishing House, Beijing.   Zhang P, Gu RJ and Zhang F (2007). Changes of serum interleukin levels and its clinic significance in patients with delayed encephalopathy after acute carbon monoxide poisoning. J. Clin. Neurol. 20: 220-221.   Zhen L, Gu RJ and Zhang P (2008). Serum levels and clinical significance of IL in patients with delayed encephalopathy after acute carbon monoxide poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 26: 561-562. PMid:19309591
Q. Ren, Xu, B., Chen, S. Q., Yang, Y., Wang, C. Y., Wang, Y. D., Wang, X. H., Hua, L. X., and Chen, M., A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population, vol. 11, pp. 1349-1356, 2012.
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, et al. (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41: 986-990. http://dx.doi.org/10.1038/ng.429 PMid:19648918 PMCid:2839871   Crawford ED (2003). Epidemiology of prostate cancer. Urology 62: 3-12. http://dx.doi.org/10.1016/j.urology.2003.10.013 PMid:14706503   Dennis LK, Lynch CF and Torner JC (2002). Epidemiologic association between prostatitis and prostate cancer. Urology 60: 78-83. http://dx.doi.org/10.1016/S0090-4295(02)01637-0   Gleason DF and Mellinger GT (1974). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111: 58-64. PMid:4813554   Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, et al. (2007). Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39: 631-637. http://dx.doi.org/10.1038/ng1999 PMid:17401366   Jemal A, Siegel R, Ward E, Hao Y, et al. (2009). Cancer statistics, 2009. CA Cancer J. Clin. 59: 225-249. http://dx.doi.org/10.3322/caac.20006 PMid:19474385   Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90. http://dx.doi.org/10.3322/caac.20107 PMid:21296855   Kiemeney LA, Thorlacius S, Sulem P, Geller F, et al. (2008). Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40: 1307-1312. http://dx.doi.org/10.1038/ng.229 PMid:18794855   Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85. http://dx.doi.org/10.1056/NEJM200007133430201 PMid:10891514   Mandal RK, Kapoor R and Mittal RD (2010). Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population. DNA Cell Biol. 29: 669-674. http://dx.doi.org/10.1089/dna.2010.1047 PMid:20590474   McCracken M, Olsen M, Chen MS Jr, Jemal A, et al. (2007). Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J. Clin. 57: 190-205. http://dx.doi.org/10.3322/canjclin.57.4.190 PMid:17626117   McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406. http://dx.doi.org/10.1038/ng.254 PMid:18978790 PMCid:2748187   Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227. http://dx.doi.org/10.1038/ng.296 PMid:19151717   Rodriguez C, Calle EE, Miracle-McMahill HL, Tatham LM, et al. (1997). Family history and risk of fatal prostate cancer. Epidemiology 8: 653-657. PMid:9345665   Schaid DJ (2004). The complex genetic epidemiology of prostate cancer. Hum. Mol. Genet. 13 (Spec No. 1): R103-R121.   Truong T, Hung RJ, Amos CI, Wu X, et al. (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 102: 959-971. http://dx.doi.org/10.1093/jnci/djq178 PMid:20548021 PMCid:2897877   Yang P, Li Y, Jiang R, Cunningham JM, et al. (2010). A rigorous and comprehensive validation: common genetic variations and lung cancer. Cancer Epidemiol. Biomark. Prev. 19: 240-244. http://dx.doi.org/10.1158/1055-9965.EPI-09-0710 PMid:20056643 PMCid:2805461   Yeager M, Orr N, Hayes RB, Jacobs KB, et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39: 645-649. http://dx.doi.org/10.1038/ng2022 PMid:17401363