Publications

Found 15 results
Filters: Author is B. Xu  [Clear All Filters]
2016
Y. Q. Huang, Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., Chen, M., Huang, Y. Q., Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., Chen, M., Huang, Y. Q., Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., and Chen, M., Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis, vol. 15, p. -, 2016.
Y. Q. Huang, Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., Chen, M., Huang, Y. Q., Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., Chen, M., Huang, Y. Q., Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., and Chen, M., Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis, vol. 15, p. -, 2016.
Y. Q. Huang, Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., Chen, M., Huang, Y. Q., Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., Chen, M., Huang, Y. Q., Guan, H., Liu, C. H., Liu, D. C., Xu, B., Jiang, L., Lin, Z. X., and Chen, M., Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis, vol. 15, p. -, 2016.
W. J. Huang, Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., Lv, B. D., Huang, W. J., Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., and Lv, B. D., Interleukin-6 -572G/C polymorphism and prostate cancer susceptibility, vol. 15, p. -, 2016.
W. J. Huang, Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., Lv, B. D., Huang, W. J., Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., and Lv, B. D., Interleukin-6 -572G/C polymorphism and prostate cancer susceptibility, vol. 15, p. -, 2016.
Y. H. Cao, Li, D. G., Xu, B., Wang, M. Q., Zhen, N., Man, L. X., Zhang, Y. Y., Chi, M., Cao, Y. H., Li, D. G., Xu, B., Wang, M. Q., Zhen, N., Man, L. X., Zhang, Y. Y., and Chi, M., A microRNA-152 that targets the phosphatase and tensin homolog to inhibit low oxygen induced-apoptosis in human brain microvascular endothelial cells, vol. 15, p. -, 2016.
Y. H. Cao, Li, D. G., Xu, B., Wang, M. Q., Zhen, N., Man, L. X., Zhang, Y. Y., Chi, M., Cao, Y. H., Li, D. G., Xu, B., Wang, M. Q., Zhen, N., Man, L. X., Zhang, Y. Y., and Chi, M., A microRNA-152 that targets the phosphatase and tensin homolog to inhibit low oxygen induced-apoptosis in human brain microvascular endothelial cells, vol. 15, p. -, 2016.
2012
Q. Ren, Xu, B., Chen, S. Q., Yang, Y., Wang, C. Y., Wang, Y. D., Wang, X. H., Hua, L. X., and Chen, M., A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population, vol. 11, pp. 1349-1356, 2012.
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, et al. (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41: 986-990. http://dx.doi.org/10.1038/ng.429 PMid:19648918 PMCid:2839871   Crawford ED (2003). Epidemiology of prostate cancer. Urology 62: 3-12. http://dx.doi.org/10.1016/j.urology.2003.10.013 PMid:14706503   Dennis LK, Lynch CF and Torner JC (2002). Epidemiologic association between prostatitis and prostate cancer. Urology 60: 78-83. http://dx.doi.org/10.1016/S0090-4295(02)01637-0   Gleason DF and Mellinger GT (1974). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111: 58-64. PMid:4813554   Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, et al. (2007). Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39: 631-637. http://dx.doi.org/10.1038/ng1999 PMid:17401366   Jemal A, Siegel R, Ward E, Hao Y, et al. (2009). Cancer statistics, 2009. CA Cancer J. Clin. 59: 225-249. http://dx.doi.org/10.3322/caac.20006 PMid:19474385   Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90. http://dx.doi.org/10.3322/caac.20107 PMid:21296855   Kiemeney LA, Thorlacius S, Sulem P, Geller F, et al. (2008). Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40: 1307-1312. http://dx.doi.org/10.1038/ng.229 PMid:18794855   Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85. http://dx.doi.org/10.1056/NEJM200007133430201 PMid:10891514   Mandal RK, Kapoor R and Mittal RD (2010). Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population. DNA Cell Biol. 29: 669-674. http://dx.doi.org/10.1089/dna.2010.1047 PMid:20590474   McCracken M, Olsen M, Chen MS Jr, Jemal A, et al. (2007). Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J. Clin. 57: 190-205. http://dx.doi.org/10.3322/canjclin.57.4.190 PMid:17626117   McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406. http://dx.doi.org/10.1038/ng.254 PMid:18978790 PMCid:2748187   Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227. http://dx.doi.org/10.1038/ng.296 PMid:19151717   Rodriguez C, Calle EE, Miracle-McMahill HL, Tatham LM, et al. (1997). Family history and risk of fatal prostate cancer. Epidemiology 8: 653-657. PMid:9345665   Schaid DJ (2004). The complex genetic epidemiology of prostate cancer. Hum. Mol. Genet. 13 (Spec No. 1): R103-R121.   Truong T, Hung RJ, Amos CI, Wu X, et al. (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 102: 959-971. http://dx.doi.org/10.1093/jnci/djq178 PMid:20548021 PMCid:2897877   Yang P, Li Y, Jiang R, Cunningham JM, et al. (2010). A rigorous and comprehensive validation: common genetic variations and lung cancer. Cancer Epidemiol. Biomark. Prev. 19: 240-244. http://dx.doi.org/10.1158/1055-9965.EPI-09-0710 PMid:20056643 PMCid:2805461   Yeager M, Orr N, Hayes RB, Jacobs KB, et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39: 645-649. http://dx.doi.org/10.1038/ng2022 PMid:17401363
A. - X. Wang, Xu, B., Tong, N., Chen, S. - Q., Yang, Y., Zhang, X. - W., Jiang, H., Liu, N., Liu, J., Hu, X. - N., Sha, G. - Z., and Chen, M., Meta-analysis confirms that a common G/C variant in the pre-miR-146a gene contributes to cancer susceptibility and that ethnicity, gender and smoking status are risk factors, vol. 11, pp. 3051-3062, 2012.
Akkiz H, Bayram S, Bekar A, Akgollu E, et al. (2011). No association of pre-microRNA-146a rs2910164 polymorphism and risk of hepatocellular carcinoma development in Turkish population: a case-control study. Gene 486: 104-109. http://dx.doi.org/10.1016/j.gene.2011.07.006 PMid:21807077   Ambros V (2004). The functions of animal microRNAs. Nature 431: 350-355. http://dx.doi.org/10.1038/nature02871 PMid:15372042   Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5   Bentwich I, Avniel A, Karov Y, Aharonov R, et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37: 766-770. http://dx.doi.org/10.1038/ng1590 PMid:15965474   Bhaumik D, Scott GK, Schokrpur S, Patil CK, et al. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27: 5643-5647. http://dx.doi.org/10.1038/onc.2008.171 PMid:18504431 PMCid:2811234   Bond GL and Levine AJ (2007). A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26: 1317-1323. http://dx.doi.org/10.1038/sj.onc.1210199 PMid:17322917   Catucci I, Yang R, Verderio P, Pizzamiglio S, et al. (2010). Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum. Mutat. 31: E1052-E1057. http://dx.doi.org/10.1002/humu.21141 PMid:19847796   Gao LB, Bai P, Pan XM, Jia J, et al. (2011). The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res. Treat. 125: 571-574. http://dx.doi.org/10.1007/s10549-010-0993-x PMid:20640596   Garcia AI, Cox DG, Barjhoux L, Verny-Pierre C, et al. (2011). The rs2910164:G>C SNP in the MIR146A gene is not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mutat. DOI 10.1002/humu.21539. http://dx.doi.org/10.1002/humu.21539   George GP, Gangwar R, Mandal RK, Sankhwar SN, et al. (2011). Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol. Biol. Rep. 38: 1609-1615. http://dx.doi.org/10.1007/s11033-010-0270-4 PMid:20842445   Guo H, Wang K, Xiong G, Hu H, et al. (2010). A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam. Cancer 9: 599-603. http://dx.doi.org/10.1007/s10689-010-9370-5 PMid:20680470   Hecht SS (2002). Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 3: 461-469. http://dx.doi.org/10.1016/S1470-2045(02)00815-X   Hirschhorn JN, Lohmueller K, Byrne E and Hirschhorn K (2002). A comprehensive review of genetic association studies. Genet. Med. 4: 45-61. http://dx.doi.org/10.1097/00125817-200203000-00002 PMid:11882781   Hishida A, Matsuo K, Goto Y, Naito M, et al. (2011). Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. Dig. Dis. Sci. 56: 1131-1137. http://dx.doi.org/10.1007/s10620-010-1376-1 PMid:20721625   Hoffman AE, Zheng T, Yi C, Leaderer D, et al. (2009). microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69: 5970-5977. http://dx.doi.org/10.1158/0008-5472.CAN-09-0236 PMid:19567675 PMCid:2716085   Hu Z, Liang J, Wang Z, Tian T, et al. (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat. 30: 79-84. http://dx.doi.org/10.1002/humu.20837 PMid:18634034   Jazdzewski K, Murray EL, Franssila K, Jarzab B, et al. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U. S. A. 105: 7269-7274. http://dx.doi.org/10.1073/pnas.0802682105 PMid:18474871 PMCid:2438239   Ji X, Zhang W, Xie C, Wang B, et al. (2011). Nasopharyngeal carcinoma risk by histologic type in central China: impact of smoking, alcohol and family history. Int. J. Cancer 129: 724-732. http://dx.doi.org/10.1002/ijc.25696 PMid:20878958   Liang PS, Chen TY and Giovannucci E (2009). Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int. J. Cancer 124: 2406-2415. http://dx.doi.org/10.1002/ijc.24191 PMid:19142968   Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer 116: 4753-4760. http://dx.doi.org/10.1002/cncr.25323 PMid:20549817 PMCid:3030480   Mittal RD, Gangwar R, George GP, Mittal T, et al. (2011). Investigative role of pre-microRNAs in bladder cancer patients: a case-control study in North India. DNA Cell Biol. 30: 401-406. http://dx.doi.org/10.1089/dna.2010.1159 PMid:21345130   Okubo M, Tahara T, Shibata T, Yamashita H, et al. (2010). Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter 15: 524-531. http://dx.doi.org/10.1111/j.1523-5378.2010.00806.x PMid:21073609   Pallante P, Visone R, Ferracin M, Ferraro A, et al. (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13: 497-508. http://dx.doi.org/10.1677/erc.1.01209 PMid:16728577   Pastrello C, Polesel J, Della Puppa L, Viel A, et al. (2010). Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis 31: 2124-2126. http://dx.doi.org/10.1093/carcin/bgq184 PMid:20810544   Permuth-Wey J, Thompson RC, Burton NL, Olson JJ, et al. (2011). A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J. Neurooncol. 105: 639-646. http://dx.doi.org/10.1007/s11060-011-0634-1 PMid:21744077   Perry MM, Moschos SA, Williams AE, Shepherd NJ, et al. (2008). Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 180: 5689-5698. PMid:18390754 PMCid:2639646   Qiu LX, He J, Wang MY, Zhang RX, et al. (2011). The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine 56: 695-698. http://dx.doi.org/10.1016/j.cyto.2011.09.001 PMid:21978540   Reis LO, Pereira TC, Lopes-Cendes I and Ferreira U (2010). MicroRNAs: a new paradigm on molecular urological oncology. Urology 76: 521-527. http://dx.doi.org/10.1016/j.urology.2010.03.012 PMid:20472270   Srivastava K, Srivastava A and Mittal B (2010). Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J. Hum. Genet. 55: 495-499. http://dx.doi.org/10.1038/jhg.2010.54 PMid:20520619   Taganov KD, Boldin MP, Chang KJ and Baltimore D (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103: 12481-12486. http://dx.doi.org/10.1073/pnas.0605298103 PMid:16885212 PMCid:1567904   Tian T, Shu Y, Chen J, Hu Z, et al. (2009). A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol. Biomarkers Prev. 18: 1183-1187. http://dx.doi.org/10.1158/1055-9965.EPI-08-0814 PMid:19293314   Volinia S, Calin GA, Liu CG, Ambs S, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103: 2257-2261. http://dx.doi.org/10.1073/pnas.0510565103 PMid:16461460 PMCid:1413718   Wang J, Bi J, Liu X, Li K, et al. (2012). Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case-control studies. Mol. Biol. Rep. 39: 4571-4579. http://dx.doi.org/10.1007/s11033-011-1247-7 PMid:21947843   Wang X, Tang S, Le SY, Lu R, et al. (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3: e2557. http://dx.doi.org/10.1371/journal.pone.0002557 PMid:18596939 PMCid:2438475   Xu B, Feng NH, Li PC, Tao J, et al. (2010). A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70: 467-472. http://dx.doi.org/10.1002/pros.21149   Xu T, Zhu Y, Wei QK, Yuan Y, et al. (2008). A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29: 2126-2131. http://dx.doi.org/10.1093/carcin/bgn195 PMid:18711148   Xu W, Xu J, Liu S, Chen B, et al. (2011). Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis. PLoS One 6: e20471. http://dx.doi.org/10.1371/journal.pone.0020471 PMid:21637771 PMCid:3102728   Yue C, Wang M, Ding B, Wang W, et al. (2011). Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol. Oncol. 122: 33-37. http://dx.doi.org/10.1016/j.ygyno.2011.03.032 PMid:21529907   Zeng Y, Sun QM, Liu NN, Dong GH, et al. (2010). Correlation between pre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World J. Gastroenterol. 16: 3578-3583. http://dx.doi.org/10.3748/wjg.v16.i28.3578 PMid:20653068 PMCid:2909559   Zhou B, Wang K, Wang Y, Xi M, et al. (2011). Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol. Carcinog. 50: 499-505. http://dx.doi.org/10.1002/mc.20740 PMid:21319225   Zhou J, Lv R, Song X, Li D, et al. (2012). Association between two genetic variants in miRNA and primary liver cancer risk in the Chinese population. DNA Cell Biol. 31: 524-530. http://dx.doi.org/10.1089/dna.2011.1340 PMid:21861697
G. - L. Wang, Xu, B., Bai, Z. - Y., and Li, J. - L., Two chitin metabolic enzyme genes from Hyriopsis cumingii: cloning, characterization, and potential functions, vol. 11, pp. 4539-4551, 2012.
Badariotti F, Thuau R, Lelong C, Dubos MP, et al. (2007). Characterization of an atypical family 18 chitinase from the oyster Crassostrea gigas: evidence for a role in early development and immunity. Dev. Comp. Immunol. 31: 559-570. http://dx.doi.org/10.1016/j.dci.2006.09.002 PMid:17056114   Badariotti F, Lelong C, Dubos MP and Favrel P (2011). Identification of three singular glycosyl hydrolase family 18 members from the oyster Crassostrea gigas: Structural characterization, phylogenetic analysis and gene expression. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 158: 56-63. http://dx.doi.org/10.1016/j.cbpb.2010.09.009 PMid:20868765   Bai ZY, Yin YX, Hu SN, Wang GL, et al. (2010). Identification of genes potentially involved in pearl formation by expressed sequence tag analysis of mantle from freshwater pearl mussel (Hyriopsis cumingii lea). J. Shellfish Res. 29: 527-534. http://dx.doi.org/10.2983/035.029.0232   Bendtsen JD, Nielsen H, von HG and Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. http://dx.doi.org/10.1016/j.jmb.2004.05.028 PMid:15223320   Cheng TC (1996). Hemocytes: Forms and Functions. In: The Eastern Oyster Crassostrea virginica (Kennedy VS, Newell RIE and Eble AF, eds.). Maryland Sea Grant Book, College Park, Maryland, 299-333. PMid:8682321   Dixit R, Arakane Y, Specht CA, Richard C, et al. (2008). Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem. Mol. Biol. 38: 440-451. http://dx.doi.org/10.1016/j.ibmb.2007.12.002 PMid:18342249   Falini G, Weiner S and Addadi L (2003). Chitin-silk fibroin interactions: relevance to calcium carbonate formation in invertebrates. Calcif. Tissue Int. 72: 548-554. http://dx.doi.org/10.1007/s00223-002-1055-0 PMid:12724827   Furuhashi T, Schwarzinger C, Miksik I, Smrz M, et al. (2009). Molluscan shell evolution with review of shell calcification hypothesis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 154: 351-371. http://dx.doi.org/10.1016/j.cbpb.2009.07.011 PMid:19665573   Huang QS, Yan JH, Tang JY, Tao YM, et al. (2010). Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish Shellfish Immunol. 29: 75-81. http://dx.doi.org/10.1016/j.fsi.2010.02.014 PMid:20202477   Jeanmougin F, Thompson JD, Gouy M, Higgins DG, et al. (1998). Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405. http://dx.doi.org/10.1016/S0968-0004(98)01285-7   Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, et al. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 8: 1567-1636. http://dx.doi.org/10.3390/md8051567 PMid:20559489 PMCid:2885081   Lelong C, Badariotti F, Le Quéré H, Rodet F, et al. (2007). Cg-TGF-beta, a TGF-beta/activin homologue in the Pacific Oyster Crassostrea gigas, is involved in immunity against Gram-negative microbial infection. Dev. Comp. Immunol. 31: 30-38. http://dx.doi.org/10.1016/j.dci.2006.05.005 PMid:16820208   Li JL, Qian RH, Bao BL, Wang GL, et al. (2005). RAPD analysis on genetic diversity among the stocks of Hyriopsis cumingii from the five large lakes of China. J. Shanghai Fish. Univ. 14: 1-5.   Liu YY (1979). Economic Fauna of China (Freshwater mollusk). Science Press, Beijing, 83-84.   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Minagawa T, Okamura Y, Shigemasa Y, Minami S, et al. (2007). Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 67: 640-644. http://dx.doi.org/10.1016/j.carbpol.2006.07.007   Montagnani C, Le Roux F, Berthe F and Escoubas JM (2001). Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms(1). FEBS Lett. 500: 64-70. http://dx.doi.org/10.1016/S0014-5793(01)02559-5   Mount AS, Wheeler AP, Paradkar RP and Snider D (2004). Hemocyte-mediated shell mineralization in the eastern oyster. Science 304: 297-300. http://dx.doi.org/10.1126/science.1090506 PMid:15073378   Proespraiwong P, Tassanakajon A and Rimphanitchayakit V (2010). Chitinases from the black tiger shrimp Penaeus monodon: phylogenetics, expression and activities. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 156: 86-96. http://dx.doi.org/10.1016/j.cbpb.2010.02.007 PMid:20197105   Ravi Kumar MNV (2000). A review of chitin and chitosan applications. React. Funct. Polym. 46: 1-27. http://dx.doi.org/10.1016/S1381-5148(00)00038-9   Riccardo AAM (2009). Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr. Polym. 83: 1433-1445.   Suzuki M, Saruwatari K, Kagure T, Yamamoto Y, et al. (2009). An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325: 1388-1390. http://dx.doi.org/10.1126/science.1173793 PMid:19679771   Wang GL, Wang JJ and Li JL (2006). Preliminary study on applicability of microsatellite primers developed from Crassostrea gigas to genomic analysis of Hyriopsis cumingii. J. Fish. China 1: 30-38.   Weiss IM, Kaufmann S, Heiland B and Tanaka M (2009). Covalent modification of chitin with silk-derivatives acts as an amphiphilic self-organizing template in nacre biomineralisation. J. Struct. Biol. 167: 68-75. http://dx.doi.org/10.1016/j.jsb.2009.04.005 PMid:19401236   Zhang J, Zhang X, Arakane Y, Muthukrishnan S, et al. (2011). Identification and characterization of a novel chitinase-like gene cluster (AgCht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 41: 521-528. http://dx.doi.org/10.1016/j.ibmb.2011.03.001 PMid:21419847   Zhou J, Gao YF, Li L, Zhai HN, et al. (2011). Identification and functional characterization of a putative 17β-hydroxysteroid dehydrogenase 12 in abalone (Haliotis diversicolor supertexta). Mol. Cell. Biochem. 354: 123-133. http://dx.doi.org/10.1007/s11010-011-0811-8 PMid:21479786   Zhu Q, Arakane Y, Banerjee D, Beeman RW, et al. (2008). Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem. Mol. Biol. 38: 452-466. http://dx.doi.org/10.1016/j.ibmb.2007.06.010 PMid:18342250