Publications
Found 15 results
Filters: Author is B. Xu [Clear All Filters]
“Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis”, vol. 15, p. -, 2016.
, “Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis”, vol. 15, p. -, 2016.
, “Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis”, vol. 15, p. -, 2016.
, “Interleukin-6 -572G/C polymorphism and prostate cancer susceptibility”, vol. 15, p. -, 2016.
, “Interleukin-6 -572G/C polymorphism and prostate cancer susceptibility”, vol. 15, p. -, 2016.
, , , “Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers”, vol. 14, pp. 3160-3169, 2015.
, “Bioinformatic analysis of the effect of type II diabetes on skin wound healing”, vol. 14, pp. 4802-4811, 2015.
, “Differential microRNA expression in signet-ring cell carcinoma compared with tubular adenocarcinoma of human gastric cancer”, vol. 14, pp. 739-747, 2015.
, “DNMT3A -448A>G polymorphism and cancer risk: a meta-analysis”, vol. 14, pp. 3640-3649, 2015.
, “Effect of miR-146a polymorphism on biochemical recurrence risk after radical prostatectomy in southern Chinese population”, vol. 13, pp. 10615-10621, 2014.
, “A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population”, vol. 11, pp. 1349-1356, 2012.
,
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, et al. (2009). Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41: 986-990.
http://dx.doi.org/10.1038/ng.429
PMid:19648918 PMCid:2839871
Crawford ED (2003). Epidemiology of prostate cancer. Urology 62: 3-12.
http://dx.doi.org/10.1016/j.urology.2003.10.013
PMid:14706503
Dennis LK, Lynch CF and Torner JC (2002). Epidemiologic association between prostatitis and prostate cancer. Urology 60: 78-83.
http://dx.doi.org/10.1016/S0090-4295(02)01637-0
Gleason DF and Mellinger GT (1974). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111: 58-64.
PMid:4813554
Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, et al. (2007). Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39: 631-637.
http://dx.doi.org/10.1038/ng1999
PMid:17401366
Jemal A, Siegel R, Ward E, Hao Y, et al. (2009). Cancer statistics, 2009. CA Cancer J. Clin. 59: 225-249.
http://dx.doi.org/10.3322/caac.20006
PMid:19474385
Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90.
http://dx.doi.org/10.3322/caac.20107
PMid:21296855
Kiemeney LA, Thorlacius S, Sulem P, Geller F, et al. (2008). Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40: 1307-1312.
http://dx.doi.org/10.1038/ng.229
PMid:18794855
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85.
http://dx.doi.org/10.1056/NEJM200007133430201
PMid:10891514
Mandal RK, Kapoor R and Mittal RD (2010). Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population. DNA Cell Biol. 29: 669-674.
http://dx.doi.org/10.1089/dna.2010.1047
PMid:20590474
McCracken M, Olsen M, Chen MS Jr, Jemal A, et al. (2007). Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J. Clin. 57: 190-205.
http://dx.doi.org/10.3322/canjclin.57.4.190
PMid:17626117
McKay JD, Hung RJ, Gaborieau V, Boffetta P, et al. (2008). Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40: 1404-1406.
http://dx.doi.org/10.1038/ng.254
PMid:18978790 PMCid:2748187
Rafnar T, Sulem P, Stacey SN, Geller F, et al. (2009). Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41: 221-227.
http://dx.doi.org/10.1038/ng.296
PMid:19151717
Rodriguez C, Calle EE, Miracle-McMahill HL, Tatham LM, et al. (1997). Family history and risk of fatal prostate cancer. Epidemiology 8: 653-657.
PMid:9345665
Schaid DJ (2004). The complex genetic epidemiology of prostate cancer. Hum. Mol. Genet. 13 (Spec No. 1): R103-R121.
Truong T, Hung RJ, Amos CI, Wu X, et al. (2010). Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl. Cancer Inst. 102: 959-971.
http://dx.doi.org/10.1093/jnci/djq178
PMid:20548021 PMCid:2897877
Yang P, Li Y, Jiang R, Cunningham JM, et al. (2010). A rigorous and comprehensive validation: common genetic variations and lung cancer. Cancer Epidemiol. Biomark. Prev. 19: 240-244.
http://dx.doi.org/10.1158/1055-9965.EPI-09-0710
PMid:20056643 PMCid:2805461
Yeager M, Orr N, Hayes RB, Jacobs KB, et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39: 645-649.
http://dx.doi.org/10.1038/ng2022
PMid:17401363
“Meta-analysis confirms that a common G/C variant in the pre-miR-146a gene contributes to cancer susceptibility and that ethnicity, gender and smoking status are risk factors”, vol. 11, pp. 3051-3062, 2012.
,
Akkiz H, Bayram S, Bekar A, Akgollu E, et al. (2011). No association of pre-microRNA-146a rs2910164 polymorphism and risk of hepatocellular carcinoma development in Turkish population: a case-control study. Gene 486: 104-109.
http://dx.doi.org/10.1016/j.gene.2011.07.006
PMid:21807077
Ambros V (2004). The functions of animal microRNAs. Nature 431: 350-355.
http://dx.doi.org/10.1038/nature02871
PMid:15372042
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
http://dx.doi.org/10.1016/S0092-8674(04)00045-5
Bentwich I, Avniel A, Karov Y, Aharonov R, et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37: 766-770.
http://dx.doi.org/10.1038/ng1590
PMid:15965474
Bhaumik D, Scott GK, Schokrpur S, Patil CK, et al. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27: 5643-5647.
http://dx.doi.org/10.1038/onc.2008.171
PMid:18504431 PMCid:2811234
Bond GL and Levine AJ (2007). A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26: 1317-1323.
http://dx.doi.org/10.1038/sj.onc.1210199
PMid:17322917
Catucci I, Yang R, Verderio P, Pizzamiglio S, et al. (2010). Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum. Mutat. 31: E1052-E1057.
http://dx.doi.org/10.1002/humu.21141
PMid:19847796
Gao LB, Bai P, Pan XM, Jia J, et al. (2011). The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res. Treat. 125: 571-574.
http://dx.doi.org/10.1007/s10549-010-0993-x
PMid:20640596
Garcia AI, Cox DG, Barjhoux L, Verny-Pierre C, et al. (2011). The rs2910164:G>C SNP in the MIR146A gene is not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mutat. DOI 10.1002/humu.21539.
http://dx.doi.org/10.1002/humu.21539
George GP, Gangwar R, Mandal RK, Sankhwar SN, et al. (2011). Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol. Biol. Rep. 38: 1609-1615.
http://dx.doi.org/10.1007/s11033-010-0270-4
PMid:20842445
Guo H, Wang K, Xiong G, Hu H, et al. (2010). A functional varient in microRNA-146a is associated with risk of esophageal squamous cell carcinoma in Chinese Han. Fam. Cancer 9: 599-603.
http://dx.doi.org/10.1007/s10689-010-9370-5
PMid:20680470
Hecht SS (2002). Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 3: 461-469.
http://dx.doi.org/10.1016/S1470-2045(02)00815-X
Hirschhorn JN, Lohmueller K, Byrne E and Hirschhorn K (2002). A comprehensive review of genetic association studies. Genet. Med. 4: 45-61.
http://dx.doi.org/10.1097/00125817-200203000-00002
PMid:11882781
Hishida A, Matsuo K, Goto Y, Naito M, et al. (2011). Combined effect of miR-146a rs2910164 G/C polymorphism and Toll-like receptor 4 +3725 G/C polymorphism on the risk of severe gastric atrophy in Japanese. Dig. Dis. Sci. 56: 1131-1137.
http://dx.doi.org/10.1007/s10620-010-1376-1
PMid:20721625
Hoffman AE, Zheng T, Yi C, Leaderer D, et al. (2009). microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69: 5970-5977.
http://dx.doi.org/10.1158/0008-5472.CAN-09-0236
PMid:19567675 PMCid:2716085
Hu Z, Liang J, Wang Z, Tian T, et al. (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat. 30: 79-84.
http://dx.doi.org/10.1002/humu.20837
PMid:18634034
Jazdzewski K, Murray EL, Franssila K, Jarzab B, et al. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U. S. A. 105: 7269-7274.
http://dx.doi.org/10.1073/pnas.0802682105
PMid:18474871 PMCid:2438239
Ji X, Zhang W, Xie C, Wang B, et al. (2011). Nasopharyngeal carcinoma risk by histologic type in central China: impact of smoking, alcohol and family history. Int. J. Cancer 129: 724-732.
http://dx.doi.org/10.1002/ijc.25696
PMid:20878958
Liang PS, Chen TY and Giovannucci E (2009). Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int. J. Cancer 124: 2406-2415.
http://dx.doi.org/10.1002/ijc.24191
PMid:19142968
Liu Z, Li G, Wei S, Niu J, et al. (2010). Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck. Cancer 116: 4753-4760.
http://dx.doi.org/10.1002/cncr.25323
PMid:20549817 PMCid:3030480
Mittal RD, Gangwar R, George GP, Mittal T, et al. (2011). Investigative role of pre-microRNAs in bladder cancer patients: a case-control study in North India. DNA Cell Biol. 30: 401-406.
http://dx.doi.org/10.1089/dna.2010.1159
PMid:21345130
Okubo M, Tahara T, Shibata T, Yamashita H, et al. (2010). Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter 15: 524-531.
http://dx.doi.org/10.1111/j.1523-5378.2010.00806.x
PMid:21073609
Pallante P, Visone R, Ferracin M, Ferraro A, et al. (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13: 497-508.
http://dx.doi.org/10.1677/erc.1.01209
PMid:16728577
Pastrello C, Polesel J, Della Puppa L, Viel A, et al. (2010). Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis 31: 2124-2126.
http://dx.doi.org/10.1093/carcin/bgq184
PMid:20810544
Permuth-Wey J, Thompson RC, Burton NL, Olson JJ, et al. (2011). A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J. Neurooncol. 105: 639-646.
http://dx.doi.org/10.1007/s11060-011-0634-1
PMid:21744077
Perry MM, Moschos SA, Williams AE, Shepherd NJ, et al. (2008). Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 180: 5689-5698.
PMid:18390754 PMCid:2639646
Qiu LX, He J, Wang MY, Zhang RX, et al. (2011). The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine 56: 695-698.
http://dx.doi.org/10.1016/j.cyto.2011.09.001
PMid:21978540
Reis LO, Pereira TC, Lopes-Cendes I and Ferreira U (2010). MicroRNAs: a new paradigm on molecular urological oncology. Urology 76: 521-527.
http://dx.doi.org/10.1016/j.urology.2010.03.012
PMid:20472270
Srivastava K, Srivastava A and Mittal B (2010). Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J. Hum. Genet. 55: 495-499.
http://dx.doi.org/10.1038/jhg.2010.54
PMid:20520619
Taganov KD, Boldin MP, Chang KJ and Baltimore D (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U. S. A. 103: 12481-12486.
http://dx.doi.org/10.1073/pnas.0605298103
PMid:16885212 PMCid:1567904
Tian T, Shu Y, Chen J, Hu Z, et al. (2009). A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol. Biomarkers Prev. 18: 1183-1187.
http://dx.doi.org/10.1158/1055-9965.EPI-08-0814
PMid:19293314
Volinia S, Calin GA, Liu CG, Ambs S, et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U. S. A. 103: 2257-2261.
http://dx.doi.org/10.1073/pnas.0510565103
PMid:16461460 PMCid:1413718
Wang J, Bi J, Liu X, Li K, et al. (2012). Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case-control studies. Mol. Biol. Rep. 39: 4571-4579.
http://dx.doi.org/10.1007/s11033-011-1247-7
PMid:21947843
Wang X, Tang S, Le SY, Lu R, et al. (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3: e2557.
http://dx.doi.org/10.1371/journal.pone.0002557
PMid:18596939 PMCid:2438475
Xu B, Feng NH, Li PC, Tao J, et al. (2010). A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 70: 467-472.
http://dx.doi.org/10.1002/pros.21149
Xu T, Zhu Y, Wei QK, Yuan Y, et al. (2008). A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29: 2126-2131.
http://dx.doi.org/10.1093/carcin/bgn195
PMid:18711148
Xu W, Xu J, Liu S, Chen B, et al. (2011). Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis. PLoS One 6: e20471.
http://dx.doi.org/10.1371/journal.pone.0020471
PMid:21637771 PMCid:3102728
Yue C, Wang M, Ding B, Wang W, et al. (2011). Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol. Oncol. 122: 33-37.
http://dx.doi.org/10.1016/j.ygyno.2011.03.032
PMid:21529907
Zeng Y, Sun QM, Liu NN, Dong GH, et al. (2010). Correlation between pre-miR-146a C/G polymorphism and gastric cancer risk in Chinese population. World J. Gastroenterol. 16: 3578-3583.
http://dx.doi.org/10.3748/wjg.v16.i28.3578
PMid:20653068 PMCid:2909559
Zhou B, Wang K, Wang Y, Xi M, et al. (2011). Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma. Mol. Carcinog. 50: 499-505.
http://dx.doi.org/10.1002/mc.20740
PMid:21319225
Zhou J, Lv R, Song X, Li D, et al. (2012). Association between two genetic variants in miRNA and primary liver cancer risk in the Chinese population. DNA Cell Biol. 31: 524-530.
http://dx.doi.org/10.1089/dna.2011.1340
PMid:21861697
“Two chitin metabolic enzyme genes from Hyriopsis cumingii: cloning, characterization, and potential functions”, vol. 11, pp. 4539-4551, 2012.
, Badariotti F, Thuau R, Lelong C, Dubos MP, et al. (2007). Characterization of an atypical family 18 chitinase from the oyster Crassostrea gigas: evidence for a role in early development and immunity. Dev. Comp. Immunol. 31: 559-570.
http://dx.doi.org/10.1016/j.dci.2006.09.002
PMid:17056114
Badariotti F, Lelong C, Dubos MP and Favrel P (2011). Identification of three singular glycosyl hydrolase family 18 members from the oyster Crassostrea gigas: Structural characterization, phylogenetic analysis and gene expression. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 158: 56-63.
http://dx.doi.org/10.1016/j.cbpb.2010.09.009
PMid:20868765
Bai ZY, Yin YX, Hu SN, Wang GL, et al. (2010). Identification of genes potentially involved in pearl formation by expressed sequence tag analysis of mantle from freshwater pearl mussel (Hyriopsis cumingii lea). J. Shellfish Res. 29: 527-534.
http://dx.doi.org/10.2983/035.029.0232
Bendtsen JD, Nielsen H, von HG and Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795.
http://dx.doi.org/10.1016/j.jmb.2004.05.028
PMid:15223320
Cheng TC (1996). Hemocytes: Forms and Functions. In: The Eastern Oyster Crassostrea virginica (Kennedy VS, Newell RIE and Eble AF, eds.). Maryland Sea Grant Book, College Park, Maryland, 299-333.
PMid:8682321
Dixit R, Arakane Y, Specht CA, Richard C, et al. (2008). Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem. Mol. Biol. 38: 440-451.
http://dx.doi.org/10.1016/j.ibmb.2007.12.002
PMid:18342249
Falini G, Weiner S and Addadi L (2003). Chitin-silk fibroin interactions: relevance to calcium carbonate formation in invertebrates. Calcif. Tissue Int. 72: 548-554.
http://dx.doi.org/10.1007/s00223-002-1055-0
PMid:12724827
Furuhashi T, Schwarzinger C, Miksik I, Smrz M, et al. (2009). Molluscan shell evolution with review of shell calcification hypothesis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 154: 351-371.
http://dx.doi.org/10.1016/j.cbpb.2009.07.011
PMid:19665573
Huang QS, Yan JH, Tang JY, Tao YM, et al. (2010). Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish Shellfish Immunol. 29: 75-81.
http://dx.doi.org/10.1016/j.fsi.2010.02.014
PMid:20202477
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, et al. (1998). Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405.
http://dx.doi.org/10.1016/S0968-0004(98)01285-7
Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, et al. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 8: 1567-1636.
http://dx.doi.org/10.3390/md8051567
PMid:20559489 PMCid:2885081
Lelong C, Badariotti F, Le Quéré H, Rodet F, et al. (2007). Cg-TGF-beta, a TGF-beta/activin homologue in the Pacific Oyster Crassostrea gigas, is involved in immunity against Gram-negative microbial infection. Dev. Comp. Immunol. 31: 30-38.
http://dx.doi.org/10.1016/j.dci.2006.05.005
PMid:16820208
Li JL, Qian RH, Bao BL, Wang GL, et al. (2005). RAPD analysis on genetic diversity among the stocks of Hyriopsis cumingii from the five large lakes of China. J. Shanghai Fish. Univ. 14: 1-5.
Liu YY (1979). Economic Fauna of China (Freshwater mollusk). Science Press, Beijing, 83-84.
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT Method. Methods 25: 402-408.
http://dx.doi.org/10.1006/meth.2001.1262
PMid:11846609
Minagawa T, Okamura Y, Shigemasa Y, Minami S, et al. (2007). Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 67: 640-644.
http://dx.doi.org/10.1016/j.carbpol.2006.07.007
Montagnani C, Le Roux F, Berthe F and Escoubas JM (2001). Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms(1). FEBS Lett. 500: 64-70.
http://dx.doi.org/10.1016/S0014-5793(01)02559-5
Mount AS, Wheeler AP, Paradkar RP and Snider D (2004). Hemocyte-mediated shell mineralization in the eastern oyster. Science 304: 297-300.
http://dx.doi.org/10.1126/science.1090506
PMid:15073378
Proespraiwong P, Tassanakajon A and Rimphanitchayakit V (2010). Chitinases from the black tiger shrimp Penaeus monodon: phylogenetics, expression and activities. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 156: 86-96.
http://dx.doi.org/10.1016/j.cbpb.2010.02.007
PMid:20197105
Ravi Kumar MNV (2000). A review of chitin and chitosan applications. React. Funct. Polym. 46: 1-27.
http://dx.doi.org/10.1016/S1381-5148(00)00038-9
Riccardo AAM (2009). Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr. Polym. 83: 1433-1445.
Suzuki M, Saruwatari K, Kagure T, Yamamoto Y, et al. (2009). An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325: 1388-1390.
http://dx.doi.org/10.1126/science.1173793
PMid:19679771
Wang GL, Wang JJ and Li JL (2006). Preliminary study on applicability of microsatellite primers developed from Crassostrea gigas to genomic analysis of Hyriopsis cumingii. J. Fish. China 1: 30-38.
Weiss IM, Kaufmann S, Heiland B and Tanaka M (2009). Covalent modification of chitin with silk-derivatives acts as an amphiphilic self-organizing template in nacre biomineralisation. J. Struct. Biol. 167: 68-75.
http://dx.doi.org/10.1016/j.jsb.2009.04.005
PMid:19401236
Zhang J, Zhang X, Arakane Y, Muthukrishnan S, et al. (2011). Identification and characterization of a novel chitinase-like gene cluster (AgCht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 41: 521-528.
http://dx.doi.org/10.1016/j.ibmb.2011.03.001
PMid:21419847
Zhou J, Gao YF, Li L, Zhai HN, et al. (2011). Identification and functional characterization of a putative 17β-hydroxysteroid dehydrogenase 12 in abalone (Haliotis diversicolor supertexta). Mol. Cell. Biochem. 354: 123-133.
http://dx.doi.org/10.1007/s11010-011-0811-8
PMid:21479786
Zhu Q, Arakane Y, Banerjee D, Beeman RW, et al. (2008). Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem. Mol. Biol. 38: 452-466.
http://dx.doi.org/10.1016/j.ibmb.2007.06.010
PMid:18342250