Publications

Found 8 results
Filters: Author is H. Cheng  [Clear All Filters]
2013
F. Xu, Huang, X. H., Li, L. L., Deng, G., Cheng, H., Rong, X. F., Li, J. B., and Cheng, S. Y., Molecular cloning and characterization of GbDXS and GbGGPPS gene promoters from Ginkgo biloba, vol. 12. pp. 293-301, 2013.
Bate N and Twell D (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869. http://dx.doi.org/10.1023/A:1006095023050 PMid:9678581   de Souza CR, Aragao FJ, Moreira EC, Costa CN, et al. (2009). Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots. Genet. Mol. Res. 8: 334-344. http://dx.doi.org/10.4238/vol8-1gmr560 PMid:19440969   Edwards D, Murray JA and Smith AG (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015-1022. http://dx.doi.org/10.1104/pp.117.3.1015 PMid:9662544 PMCid:34917   Gong YF, Liao ZH, Guo BH, Sun XF, et al. (2006). Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Planta Med. 72: 329-335. http://dx.doi.org/10.1055/s-2005-916234 PMid:16557474   Kawoosa T, Singh H, Kumar A, Sharma SK, et al. (2010). Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct. Integr. Genomics 10: 393-404. http://dx.doi.org/10.1007/s10142-009-0152-9 PMid:20076984   Kim JH, Lee KI, Chang YJ, and Kim SU (2012). Developmental pattern of Ginkgo biloba levopimaradiene synthase (GbLPS) as probed by promoter analysis in Arabidopsis thaliana. Plant Cell Rep. 31: 1119-1127. http://dx.doi.org/10.1007/s00299-012-1232-1 PMid:22311479   Kim SM, Kuzuyama T, Kobayashi A, Sando T, et al. (2008). 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta 227: 287-298. http://dx.doi.org/10.1007/s00425-007-0616-x PMid:17763867   Liao Z, Chen M, Gong Y, Guo L, et al. (2004). A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Seq. 15: 153-158. http://dx.doi.org/10.1080/10425170410001667348 PMid:15352294   Park HC, Kim ML, Kang YH, Jeon JM, et al. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135: 2150-2161. http://dx.doi.org/10.1104/pp.104.041442 PMid:15310827 PMCid:520786   Planchais S, Perennes C, Glab N, Mironov V, et al. (2002). Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath; CycB1; 1 transcription and identification of putative regulatory proteins. Plant Mol. Biol. 50: 111-127. http://dx.doi.org/10.1023/A:1016018711532 PMid:12139003   Pufky J, Qiu Y, Rao MV, Hurban P, et al. (2003). The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct. Integr. Genomics 3: 135-143. http://dx.doi.org/10.1007/s10142-003-0093-7 PMid:14648238   Redman J, Whitcraft J, Johnson C and Arias J (2002). Abiotic and biotic stress differentially stimulates as-1 element activity in Arabidopsis. Plant Cell Rep. 21: 180-185. http://dx.doi.org/10.1007/s00299-002-0472-x   Reyes JC, Muro-Pastor MI and Florencio FJ (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 134: 1718-1732. http://dx.doi.org/10.1104/pp.103.037788 PMid:15084732 PMCid:419845   Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257. http://dx.doi.org/10.1016/j.plantsci.2005.08.027   Smale ST and Kadonaga JT (2003). The RNA polymerase II core promoter. Annu. Rev. Biochem. 72: 449-479. http://dx.doi.org/10.1146/annurev.biochem.72.121801.161520 PMid:12651739   Strømgaard K and Nakanishi K (2004). Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. 43: 1640-1658. http://dx.doi.org/10.1002/anie.200300601 PMid:15038029   Tatematsu K, Ward S, Leyser O, Kamiya Y, et al. (2005). Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol. 138: 757-766. http://dx.doi.org/10.1104/pp.104.057984 PMid:15908603 PMCid:1150394   van Beek TA and Montoro P (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216: 2002-2032. http://dx.doi.org/10.1016/j.chroma.2009.01.013 PMid:19195661   Wang Y, Liu GJ, Yan XF, Wei ZG, et al. (2011). MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. J. Plant Dis. Protect. 118: 69-74.   Xu F, Zhang WW, Sun NN, Li LL, et al. (2011). Effect of chlorocholine chloride on photosynthesis, soluble sugar and terpene trilactones of Ginkgo Biloba. Acta Hort. Sin. 38: 2253-2260.   Zhang ZL, Xie Z, Zou X, Casaretto J, et al. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500-1513. http://dx.doi.org/10.1104/pp.103.034967 PMid:15047897 PMCid:419826
2012
Y. Wu, Zou, H. D., Cheng, H., Zhao, C. Y., Sun, L. F., Su, S. Z., Li, S. P., and Yuan, Y. P., Cloning and characterization of a β-amyrin synthase gene from the medicinal tree Aralia elata (Araliaceae), vol. 11, pp. 2301-2314, 2012.
Abe I and Prestwich GD (1995). Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231-234. http://dx.doi.org/10.1007/BF02537826 PMid:7791531   Abe I, Rohmer M and Prestwich GD (1993). Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189-2206. http://dx.doi.org/10.1021/cr00022a009   Basyuni M, Oku H, Tsujimoto E, Kinjo K, et al. (2007). Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae. FEBS J. 274: 5028-5042. http://dx.doi.org/10.1111/j.1742-4658.2007.06025.x PMid:17803686   Cammareri M, Consiglio MF, Pecchia P, Corea G, et al. (2008). Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Sci. 175: 255-261. http://dx.doi.org/10.1016/j.plantsci.2008.04.004   Chung CK and Jung ME (2003). Ethanol fraction of Aralia elata Seemann enhances antioxidant activity and lowers serum lipids in rats when administered with benzo(a)pyrene. Biol. Pharm. Bull. 26: 1502-1504. http://dx.doi.org/10.1248/bpb.26.1502 PMid:14519964   Haralampidis K, Bryan G, Qi X, Papadopoulou K, et al. (2001). A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. U. S. A. 98: 13431-13436. http://dx.doi.org/10.1073/pnas.231324698 PMid:11606766 PMCid:60888   Hayashi H, Huang P, Kirakosyan A, Inoue K, et al. (2001). Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol. Pharm. Bull. 24: 912-916. http://dx.doi.org/10.1248/bpb.24.912 PMid:11510484   Hostettmann K and Marston A (1995). Saponins. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511565113   Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K and Osbourn AE (2003). Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51: 731-743. http://dx.doi.org/10.1023/A:1022519709298 PMid:12683345   Kajikawa M, Yamato KT, Fukuzawa H, Sakai Y, et al. (2005). Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry 66: 1759-1766. http://dx.doi.org/10.1016/j.phytochem.2005.05.021 PMid:16005035   Kim JS, Shim SH, Chae S, Han SJ, et al. (2005). Saponins and other constituents from the leaves of Aralia elata. Chem. Pharm. Bull. 53: 696-700. http://dx.doi.org/10.1248/cpb.53.696   Kim OK, Lee EB and Kang SS (1993). Antihyperglycemic constituent of Aralia elata root bark. (II). Isolation and action of the constituents. Saengyak Hakhoechi 24: 219-222.   Kushiro T, Shibuya M and Ebizuka Y (1998a). Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238-244. http://dx.doi.org/10.1046/j.1432-1327.1998.2560238.x PMid:9746369   Kushiro T, Shibuya M and Ebizuka Y (1998b). Towards Natural Medicine Research in the 21st Century. In: Excerpta Medica International Congress Series (Ageta H, Aimi N, Ebizuka Y and Honda G, eds.). Elsevier Science, Amsterdam, 421-428.   Kushiro T, Shibuya M, Masuda K and Ebizuka Y (2000). Mutational studies on triterpene synthases: engineering lupeol synthase into β-amyrin synthase. J. Am. Chem. Soc. 122: 6816-6824. http://dx.doi.org/10.1021/ja0010709   Lee JH, Ha YW, Jeong CS, Kim YS, et al. (2009). Isolation and tandem mass fragmentations of an anti-inflammatory compound from Aralia elata. Arch. Pharm. Res. 32: 831-840. http://dx.doi.org/10.1007/s12272-009-1603-5 PMid:19557359   Li L, Song SJ, Li LZ, Liang ZX, et al. (2006). Chemical constituents of the buds of Aralia elata (Miq.) Seem. (III). J. Shenyang Pharm. Univ. 23: 495-498.   Li L, Song SJ, Liang ZX and Xu SX (2007). A new triterpenoidal saponin from the buds of Aralia elata (Miq.). Seem. Asian. J. Tradit. Med. 2: 1-4.   Liu Y, Cai Y, Zhao Z, Wang J, et al. (2009). Cloning and Functional Analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM. Biol. Pharm. Bull. 32: 818-824. http://dx.doi.org/10.1248/bpb.32.818 PMid:19420748   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, et al. (2007). An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. J. Am. Chem. Soc. 129: 11213-11222. http://dx.doi.org/10.1021/ja073133u PMid:17705488   Meesapyodsuk D, Balsevich J, Reed DW and Covello PS (2007). Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol. 143: 959-969. http://dx.doi.org/10.1104/pp.106.088484 PMid:17172290 PMCid:1803722   Morita M, Shibuya M, Kushiro T, Masuda K, et al. (2000). Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267: 3453-3460. http://dx.doi.org/10.1046/j.1432-1327.2000.01357.x PMid:10848960   New Medical College of Jiangsu (1977). Dictionary of Chinese Materia Medica. Shanghai Scientific and Technological Publishing, Shanghai.   Nhiem NX, Lim HY, Kiem PV, Minh CV, et al. (2011). Oleanane-type triterpene saponins from the bark of Aralia elata and their NF-kappaB inhibition and PPAR activation signal pathway. Bioorg. Med. Chem. Lett. 21: 6143-6147. http://dx.doi.org/10.1016/j.bmcl.2011.08.024 PMid:21889336   Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. PMid:8902363   Phillips DR, Rasbery JM, Bartel B and Matsuda SP (2006). Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9: 305-314. http://dx.doi.org/10.1016/j.pbi.2006.03.004 PMid:16581287   Poralla K, Hewelt A, Prestwich GD, Abe I, et al. (1994). A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157-158. http://dx.doi.org/10.1016/0968-0004(94)90276-3   Saito S, Ebashi J, Sumita S, Furumoto T, et al. (1993). Comparison of cytoprotective effects of saponins isolated from leaves of Aralia elata Seem. (Araliaceae) with synthesized bisdesmosides of oleanoic acid and hederagenin on carbon tetrachloride-induced hepatic injury. Chem. Pharm. Bull. 41: 1395-1401. http://dx.doi.org/10.1248/cpb.41.1395   Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257. http://dx.doi.org/10.1016/j.plantsci.2005.08.027   Scholz M, Lipinski M, Leupold M, Luftmann H, et al. (2009). Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry 70: 517-522. http://dx.doi.org/10.1016/j.phytochem.2009.01.018 PMid:19282005   Shibuya M, Katsube Y, Otsuka M, Zhang H, et al. (2009). Identification of a product specific β-amyrin synthase from Arabidopsis thaliana. Plant Physiol. Biochem. 47: 26-30. http://dx.doi.org/10.1016/j.plaphy.2008.09.007 PMid:18977664   Song SJ, Nakamura N, Ma CM, Hattori M, et al. (2001). Five saponins from the root bark of Aralia elata. Phytochemistry 56: 491-497. http://dx.doi.org/10.1016/S0031-9422(00)00379-4   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Yendo AC, de Costa F, Gosmann G and Fett-Neto AG (2010). Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields. Mol. Biotechnol. 46: 94-104. http://dx.doi.org/10.1007/s12033-010-9257-6 PMid:20204713   Yoshikawa M, Yoshizumi S, Ueno T, Matsuda H, et al. (1995). Medicinal foodstuffs. I. Hypoglycemic constituents from a garnish foodstuff "taranome", the young shoot of Aralia elata SEEM.: elatosides G, H, I, J, and K. Chem. Pharm. Bull. 43: 1878-1882. http://dx.doi.org/10.1248/cpb.43.1878   Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996a). Bioactive saponins and glycosides. VI. Elatosides A and B, potent inhibitors of ethanol absorption, from the bark of Aralia elata SEEM. (Araliaceae): the structure-requirement in oleanolic acid glucuronide-saponins for the inhibitory activity. Chem. Pharm. Bull. 44: 1915-1922. http://dx.doi.org/10.1248/cpb.44.1915   Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996b). Bioactive saponins and glycosides. VII. On the hypoglycemic principles from the root cortex of Aralia elata Seem.: structure related hypoglycemic activity of oleanolic acid oligoglycoside. Chem. Pharm. Bull. 44: 1923-1927. http://dx.doi.org/10.1248/cpb.44.1923   Zhang H, Shibuya M, Yokota S and Ebizuka Y (2003). Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol. Pharm. Bull. 26: 642-650. http://dx.doi.org/10.1248/bpb.26.642 PMid:12736505   Zhang M, Liu G, Tang S, Song S, et al. (2006). Effect of five triterpenoid compounds from the buds of Aralia elata on stimulus-induced superoxide generation, tyrosyl phosphorylation and translocation of cytosolic compounds to the cell membrane in human neutrophils. Planta Med. 72: 1216-1222. http://dx.doi.org/10.1055/s-2006-951679 PMid:17021995