Publications
Found 8 results
Filters: Author is H. Cheng [Clear All Filters]
,
“Heterozygosities and genetic relationship of tea cultivars revealed by simple sequence repeat markers and implications for breeding and genetic mapping programs”, vol. 14, pp. 1557-1565, 2015.
, “Molecular cloning and characterization of GbMECT and GbMECP gene promoters from Ginkgo biloba”, vol. 14, pp. 15112-15122, 2015.
, “Development and characterization of single nucleotide polymorphism markers in Camellia sinensis (Theaceae)”, vol. 13, pp. 5822-5831, 2014.
, “Functional characterization of the Ginkgo biloba chalcone synthase gene promoter in transgenic tobacco”, vol. 13, pp. 3446-3460, 2014.
, “H558R polymorphism in SCN5A is associated with Keshan disease and QRS prolongation in Keshan disease patients”, vol. 13, pp. 6569-6576, 2014.
, “Molecular cloning and characterization of GbDXS and GbGGPPS gene promoters from Ginkgo biloba”, vol. 12. pp. 293-301, 2013.
, Bate N and Twell D (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859-869.
http://dx.doi.org/10.1023/A:1006095023050
PMid:9678581
de Souza CR, Aragao FJ, Moreira EC, Costa CN, et al. (2009). Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots. Genet. Mol. Res. 8: 334-344.
http://dx.doi.org/10.4238/vol8-1gmr560
PMid:19440969
Edwards D, Murray JA and Smith AG (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol. 117: 1015-1022.
http://dx.doi.org/10.1104/pp.117.3.1015
PMid:9662544 PMCid:34917
Gong YF, Liao ZH, Guo BH, Sun XF, et al. (2006). Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Planta Med. 72: 329-335.
http://dx.doi.org/10.1055/s-2005-916234
PMid:16557474
Kawoosa T, Singh H, Kumar A, Sharma SK, et al. (2010). Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct. Integr. Genomics 10: 393-404.
http://dx.doi.org/10.1007/s10142-009-0152-9
PMid:20076984
Kim JH, Lee KI, Chang YJ, and Kim SU (2012). Developmental pattern of Ginkgo biloba levopimaradiene synthase (GbLPS) as probed by promoter analysis in Arabidopsis thaliana. Plant Cell Rep. 31: 1119-1127.
http://dx.doi.org/10.1007/s00299-012-1232-1
PMid:22311479
Kim SM, Kuzuyama T, Kobayashi A, Sando T, et al. (2008). 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta 227: 287-298.
http://dx.doi.org/10.1007/s00425-007-0616-x
PMid:17763867
Liao Z, Chen M, Gong Y, Guo L, et al. (2004). A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Seq. 15: 153-158.
http://dx.doi.org/10.1080/10425170410001667348
PMid:15352294
Park HC, Kim ML, Kang YH, Jeon JM, et al. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135: 2150-2161.
http://dx.doi.org/10.1104/pp.104.041442
PMid:15310827 PMCid:520786
Planchais S, Perennes C, Glab N, Mironov V, et al. (2002). Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath; CycB1; 1 transcription and identification of putative regulatory proteins. Plant Mol. Biol. 50: 111-127.
http://dx.doi.org/10.1023/A:1016018711532
PMid:12139003
Pufky J, Qiu Y, Rao MV, Hurban P, et al. (2003). The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct. Integr. Genomics 3: 135-143.
http://dx.doi.org/10.1007/s10142-003-0093-7
PMid:14648238
Redman J, Whitcraft J, Johnson C and Arias J (2002). Abiotic and biotic stress differentially stimulates as-1 element activity in Arabidopsis. Plant Cell Rep. 21: 180-185.
http://dx.doi.org/10.1007/s00299-002-0472-x
Reyes JC, Muro-Pastor MI and Florencio FJ (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 134: 1718-1732.
http://dx.doi.org/10.1104/pp.103.037788
PMid:15084732 PMCid:419845
Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257.
http://dx.doi.org/10.1016/j.plantsci.2005.08.027
Smale ST and Kadonaga JT (2003). The RNA polymerase II core promoter. Annu. Rev. Biochem. 72: 449-479.
http://dx.doi.org/10.1146/annurev.biochem.72.121801.161520
PMid:12651739
Strømgaard K and Nakanishi K (2004). Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew. Chem. Int. Ed. 43: 1640-1658.
http://dx.doi.org/10.1002/anie.200300601
PMid:15038029
Tatematsu K, Ward S, Leyser O, Kamiya Y, et al. (2005). Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol. 138: 757-766.
http://dx.doi.org/10.1104/pp.104.057984
PMid:15908603 PMCid:1150394
van Beek TA and Montoro P (2009). Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216: 2002-2032.
http://dx.doi.org/10.1016/j.chroma.2009.01.013
PMid:19195661
Wang Y, Liu GJ, Yan XF, Wei ZG, et al. (2011). MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. J. Plant Dis. Protect. 118: 69-74.
Xu F, Zhang WW, Sun NN, Li LL, et al. (2011). Effect of chlorocholine chloride on photosynthesis, soluble sugar and terpene trilactones of Ginkgo Biloba. Acta Hort. Sin. 38: 2253-2260.
Zhang ZL, Xie Z, Zou X, Casaretto J, et al. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500-1513.
http://dx.doi.org/10.1104/pp.103.034967
PMid:15047897 PMCid:419826
“Cloning and characterization of a β-amyrin synthase gene from the medicinal tree Aralia elata (Araliaceae)”, vol. 11, pp. 2301-2314, 2012.
,
Abe I and Prestwich GD (1995). Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231-234.
http://dx.doi.org/10.1007/BF02537826
PMid:7791531
Abe I, Rohmer M and Prestwich GD (1993). Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189-2206.
http://dx.doi.org/10.1021/cr00022a009
Basyuni M, Oku H, Tsujimoto E, Kinjo K, et al. (2007). Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae. FEBS J. 274: 5028-5042.
http://dx.doi.org/10.1111/j.1742-4658.2007.06025.x
PMid:17803686
Cammareri M, Consiglio MF, Pecchia P, Corea G, et al. (2008). Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Sci. 175: 255-261.
http://dx.doi.org/10.1016/j.plantsci.2008.04.004
Chung CK and Jung ME (2003). Ethanol fraction of Aralia elata Seemann enhances antioxidant activity and lowers serum lipids in rats when administered with benzo(a)pyrene. Biol. Pharm. Bull. 26: 1502-1504.
http://dx.doi.org/10.1248/bpb.26.1502
PMid:14519964
Haralampidis K, Bryan G, Qi X, Papadopoulou K, et al. (2001). A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. U. S. A. 98: 13431-13436.
http://dx.doi.org/10.1073/pnas.231324698
PMid:11606766 PMCid:60888
Hayashi H, Huang P, Kirakosyan A, Inoue K, et al. (2001). Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol. Pharm. Bull. 24: 912-916.
http://dx.doi.org/10.1248/bpb.24.912
PMid:11510484
Hostettmann K and Marston A (1995). Saponins. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511565113
Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K and Osbourn AE (2003). Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51: 731-743.
http://dx.doi.org/10.1023/A:1022519709298
PMid:12683345
Kajikawa M, Yamato KT, Fukuzawa H, Sakai Y, et al. (2005). Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry 66: 1759-1766.
http://dx.doi.org/10.1016/j.phytochem.2005.05.021
PMid:16005035
Kim JS, Shim SH, Chae S, Han SJ, et al. (2005). Saponins and other constituents from the leaves of Aralia elata. Chem. Pharm. Bull. 53: 696-700.
http://dx.doi.org/10.1248/cpb.53.696
Kim OK, Lee EB and Kang SS (1993). Antihyperglycemic constituent of Aralia elata root bark. (II). Isolation and action of the constituents. Saengyak Hakhoechi 24: 219-222.
Kushiro T, Shibuya M and Ebizuka Y (1998a). Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238-244.
http://dx.doi.org/10.1046/j.1432-1327.1998.2560238.x
PMid:9746369
Kushiro T, Shibuya M and Ebizuka Y (1998b). Towards Natural Medicine Research in the 21st Century. In: Excerpta Medica International Congress Series (Ageta H, Aimi N, Ebizuka Y and Honda G, eds.). Elsevier Science, Amsterdam, 421-428.
Kushiro T, Shibuya M, Masuda K and Ebizuka Y (2000). Mutational studies on triterpene synthases: engineering lupeol synthase into β-amyrin synthase. J. Am. Chem. Soc. 122: 6816-6824.
http://dx.doi.org/10.1021/ja0010709
Lee JH, Ha YW, Jeong CS, Kim YS, et al. (2009). Isolation and tandem mass fragmentations of an anti-inflammatory compound from Aralia elata. Arch. Pharm. Res. 32: 831-840.
http://dx.doi.org/10.1007/s12272-009-1603-5
PMid:19557359
Li L, Song SJ, Li LZ, Liang ZX, et al. (2006). Chemical constituents of the buds of Aralia elata (Miq.) Seem. (III). J. Shenyang Pharm. Univ. 23: 495-498.
Li L, Song SJ, Liang ZX and Xu SX (2007). A new triterpenoidal saponin from the buds of Aralia elata (Miq.). Seem. Asian. J. Tradit. Med. 2: 1-4.
Liu Y, Cai Y, Zhao Z, Wang J, et al. (2009). Cloning and Functional Analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM. Biol. Pharm. Bull. 32: 818-824.
http://dx.doi.org/10.1248/bpb.32.818
PMid:19420748
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, et al. (2007). An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. J. Am. Chem. Soc. 129: 11213-11222.
http://dx.doi.org/10.1021/ja073133u
PMid:17705488
Meesapyodsuk D, Balsevich J, Reed DW and Covello PS (2007). Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol. 143: 959-969.
http://dx.doi.org/10.1104/pp.106.088484
PMid:17172290 PMCid:1803722
Morita M, Shibuya M, Kushiro T, Masuda K, et al. (2000). Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267: 3453-3460.
http://dx.doi.org/10.1046/j.1432-1327.2000.01357.x
PMid:10848960
New Medical College of Jiangsu (1977). Dictionary of Chinese Materia Medica. Shanghai Scientific and Technological Publishing, Shanghai.
Nhiem NX, Lim HY, Kiem PV, Minh CV, et al. (2011). Oleanane-type triterpene saponins from the bark of Aralia elata and their NF-kappaB inhibition and PPAR activation signal pathway. Bioorg. Med. Chem. Lett. 21: 6143-6147.
http://dx.doi.org/10.1016/j.bmcl.2011.08.024
PMid:21889336
Page RD (1996). TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358.
PMid:8902363
Phillips DR, Rasbery JM, Bartel B and Matsuda SP (2006). Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9: 305-314.
http://dx.doi.org/10.1016/j.pbi.2006.03.004
PMid:16581287
Poralla K, Hewelt A, Prestwich GD, Abe I, et al. (1994). A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157-158.
http://dx.doi.org/10.1016/0968-0004(94)90276-3
Saito S, Ebashi J, Sumita S, Furumoto T, et al. (1993). Comparison of cytoprotective effects of saponins isolated from leaves of Aralia elata Seem. (Araliaceae) with synthesized bisdesmosides of oleanoic acid and hederagenin on carbon tetrachloride-induced hepatic injury. Chem. Pharm. Bull. 41: 1395-1401.
http://dx.doi.org/10.1248/cpb.41.1395
Sawai S, Shindo T, Sato S, Kaneko T, et al. (2006). Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci. 170: 247-257.
http://dx.doi.org/10.1016/j.plantsci.2005.08.027
Scholz M, Lipinski M, Leupold M, Luftmann H, et al. (2009). Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry 70: 517-522.
http://dx.doi.org/10.1016/j.phytochem.2009.01.018
PMid:19282005
Shibuya M, Katsube Y, Otsuka M, Zhang H, et al. (2009). Identification of a product specific β-amyrin synthase from Arabidopsis thaliana. Plant Physiol. Biochem. 47: 26-30.
http://dx.doi.org/10.1016/j.plaphy.2008.09.007
PMid:18977664
Song SJ, Nakamura N, Ma CM, Hattori M, et al. (2001). Five saponins from the root bark of Aralia elata. Phytochemistry 56: 491-497.
http://dx.doi.org/10.1016/S0031-9422(00)00379-4
Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
http://dx.doi.org/10.1093/nar/22.22.4673
PMid:7984417 PMCid:308517
Yendo AC, de Costa F, Gosmann G and Fett-Neto AG (2010). Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields. Mol. Biotechnol. 46: 94-104.
http://dx.doi.org/10.1007/s12033-010-9257-6
PMid:20204713
Yoshikawa M, Yoshizumi S, Ueno T, Matsuda H, et al. (1995). Medicinal foodstuffs. I. Hypoglycemic constituents from a garnish foodstuff "taranome", the young shoot of Aralia elata SEEM.: elatosides G, H, I, J, and K. Chem. Pharm. Bull. 43: 1878-1882.
http://dx.doi.org/10.1248/cpb.43.1878
Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996a). Bioactive saponins and glycosides. VI. Elatosides A and B, potent inhibitors of ethanol absorption, from the bark of Aralia elata SEEM. (Araliaceae): the structure-requirement in oleanolic acid glucuronide-saponins for the inhibitory activity. Chem. Pharm. Bull. 44: 1915-1922.
http://dx.doi.org/10.1248/cpb.44.1915
Yoshikawa M, Murakami T, Harada E, Murakami N, et al. (1996b). Bioactive saponins and glycosides. VII. On the hypoglycemic principles from the root cortex of Aralia elata Seem.: structure related hypoglycemic activity of oleanolic acid oligoglycoside. Chem. Pharm. Bull. 44: 1923-1927.
http://dx.doi.org/10.1248/cpb.44.1923
Zhang H, Shibuya M, Yokota S and Ebizuka Y (2003). Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol. Pharm. Bull. 26: 642-650.
http://dx.doi.org/10.1248/bpb.26.642
PMid:12736505
Zhang M, Liu G, Tang S, Song S, et al. (2006). Effect of five triterpenoid compounds from the buds of Aralia elata on stimulus-induced superoxide generation, tyrosyl phosphorylation and translocation of cytosolic compounds to the cell membrane in human neutrophils. Planta Med. 72: 1216-1222.
http://dx.doi.org/10.1055/s-2006-951679
PMid:17021995