Found 9 results
Filters: Author is M. Guo  [Clear All Filters]
P. Li, Cao, S., Dai, Y. L., Li, X. L., Xu, D. F., Guo, M., Pan, Y. M., and Gao, Z. M., Genetic diversity of Phytophthora capsici (Pythiaceae) isolates in Anhui Province of China based on ISSR-PCR markers, vol. 11, pp. 4285-4296, 2012.
Babadoost M and Islam SZ (2001). Seed-treatment for control of seedling death of pumpkins caused by Phytophthora capsici. Phytopathology 91: S4.   Blair MW, Panaud O and McCouch SR (1999). Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 98: 780-792.   Boccas B and Zentmyer GA (1976). Genetical studies with interspecific crosses between Phytophthora cinnamomi and Phytophthora parasitica. Phytopathology 66: 477-484.   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Förster H, Oudemans P and Coffey MD (1989). Mitochondrial and nuclear DNA diversity within six species of Phytophthora. Exp. Mycol. 14: 18-31.   Garant D, Forde SE and Hendry AP (2007). The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21: 434-443.   Gilbert JE, Lewis RV, Wilkinson MJ and Caligari PDS (1999). Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet. 98: 1125-1131.   Goodwin PH and Annis SL (1991). Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl. Environ. Microbiol. 57: 2482-2486. PMid:1768121 PMCid:183606   Grajal-Martin MJ, Simon CJ and Muehlbauer FL (1993). Use of random amplified polymorphic DNA (RAPD) to characterize race 2 Fusarium oxysporum f. sp. pisi. Phytopathology 83: 612-614.   Hao ZN, Wen JZ and Li YG (2003). Inheritance and variation in virulence of single-zoospore of Phytophthora sojae. Acta Phytopathol. Sin. 33: 347-352.   Hausbeck MK and Lamour KH (2004). Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88: 1292-1303.   Ho HH and Lu JY (1997). A synopsis of the occurrence and pathogenicity of Phytophthora species in mainland China. Mycopathologia 138: 143-161. PMid:16283113   Hurtado-Gonzales OP and Lamour KH (2009). Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici. Plant Pathol. 58: 715-722.   Hwang BK and Kim CH (1995). Phytophthora blight of pepper and its control in Korea. Plant Dis. 79: 221-227.   Lamour KH and Hausbeck MK (2001). Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology 91: 973-980. PMid:18944124   Latin RX and Rane K (1999). Identification and Management of Pumpkin Diseases. Purdue University, Lafayette.   Leonian LH (1922). Stem and fruit blight of pepper cause by Phytophthora capsici sp. nov. Phytopathology 12: 401-408.   Linde C, Drenth A and Wingfield MJ (1999). Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. Eur. J. Plant Pathol. 105: 667-680.   Manulis S, Kogan N and Reuven M (1994). Use of the RAPD technique for identification of Fusarium oxysporum f. sp. dianthi from carnation. Phytopathology 84: 98-101.   McDonald BA (1997). The population genetics of fungi: tools and techniques. Phytopathology 87: 448-453. PMid:18945126   McDonald BA and Linde C (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124: 163-180.   Mchau GRA and Coffey MD (1995). Evidence for the existence of two subpopulations in Phytophthora capsici and a redescription of the species. Mycol. Res. 99: 89-102.   Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292.   Nyasse S, Grivet L, Risterucci AM, Blaha G, et al. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD makers. Mycol. Res. 103: 1225-1234.   Ochwo MKN, Kamoun S, Adipala E, Rubaihayo PR, et al. (2002). Genetic diversity of Phytophthora infestans (Mont.) de Bary in the eastern and western highlands of Uganda. J. Phytopathol. 150: 541-542.   Oudemans P and Coffey MD (1991). Isozyme comparison within and among worldwide sources of three morphologically distinct species of Phytophthora. Mycol. Res. 95: 19-30.   Qi RD, Wang T, Li P, Ding JC, et al. (2012). Distribution of mating types of Phytophthora capsici and inheritance in asexual progenies in Anhui Province. Acta Phytopathol. Sin. 42: 45-50.   Ristaino JB and Johnston SB (1999). Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83: 1080-1089.   Rohlf FJ (2000). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Software, Setauket, New York.   Samen FMA, Secor GA and Gudmestad NC (2003). Genetic variation among asexual progeny of Phytophthora infestans detected with RAPD and AFLP markers. Plant Pathol. 52: 314-325.   Silvar C, Merino F and Díaz J (2006). Diversity of Phytophthora capsici in northwest Spain: analysis of virulence, metalaxyl response, and molecular characterization. Plant Dis. 90: 1135-1142.   Slatkin M and Barton NH (1989). A comparison of three indirect methods for estimating the average level of gene flow. Evolution 43: 1349-1368.   Wang JY and Zheng XB (2003). Phylogenetic relationship among isolates of Phytophthora boehmeriae Sawada revealed by RAPD. Mycosystema 22: 228-234.   Wang ZY, Langston DB, Csinos AS, Gitaitis RD, et al. (2009). Development of an improved isolation approach and simple sequence repeat markers to characterize Phytophthora capsici populations in irrigation ponds in southern Georgia. Appl. Environ. Microbiol. 75: 5467-5473. PMid:19581483 PMCid:2737936   Wright S (1978). Evolution and the Genetics of Populations. University of Chicago Press, Chicago.   Yang ZH, Zhu JH and Zhang FG (2008). Genetic diversity of Chinese isolates of Phytophthora infestans revealed by AFLP analysis. Mycosystema 27: 351-359.   Yeh FC, Yang RC and Boyle T (1999). POPGENE Version 1.3.1, Microsoft Window-Based Freeware for Population Genetic Analysis. University of Alberta and Centre for International Forestry Research, Alberta.   Zhang FM and Ge S (2002). Data analysis in population genetics. I. analysis of RAPD data with AMOVA. Biodiversity Sci. 10: 438-444.   Zhang J, Wu D, Wang C, Qu H, et al. (2007). Genetic diversity analysis of Quercus mongolica population with Inter- Simple Sequence Repeats (ISSR) technique. Biodiversity Sci. 15: 292-299.   Zhang ZG, Li YQ, Fan H, Wang YC, et al. (2006). Molecular detection of Phytophthora capsici in infected plant tissues, soil and water. Plant Pathol. 55: 770-775.
M. Guo, Zhang, Y. L., Meng, Z. J., and Jiang, J., Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes, vol. 11, pp. 661-671, 2012.
Biao ZY, Xia HL and Lin GZ (1994). Genetic transformation of antisense cDNA of polygalacturonase in tomato and transgenic plant regeneration. Acta Hort. Sin. 1: 305-306. Carolina C and Francisco ACM (2004). Tomato transformation and transgenic plant production. Plant Cell Tiss. Organ Cult. 76: 269-275. Chen SC, Liu AR, Wang FH and Zhou Z (2010). Establishment of Agrobacterium-mediated genetic transformation system of Micro-Tom. Acta Agricult. Boreali-Sin. 25: 112-115. Chyi YS and Phillips GC (1987). High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep. 6: 105-108. Ellul P, Garcia-Sogo B, Pineda B, Rios G, et al. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) is genotype and procedure dependent [corrected]. Theor. Appl. Genet. 106: 231-238. PMid:12582848 Frary A and Van Eck J (2005). Organogenesis from transformed tomato explants. Methods Mol. Biol. 286: 141-150. PMid:15310918 Hamza S and Chupeau Y (1993). Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot. 44: 1873-1845. Hui YG, Ying JY and Zhe JC (2007). Studies on genetic transformation system of tomato. J. Jilin Teachers Inst. Eng. Tech. 23: 56-58. Hyeon JS, Sayaka U, Shin W and Hiroshi E (2007). A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47: 426-431. Koonneef M, Hanhart C, Jongsma M, Toma I, et al. (1986). Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci. 45: 201-208. Kou XH, Luo YB, Tian HQ and Shi Y (2007). Genetic transformation processing of tomatoes with anti-PG gene. Food Sci. 28: 187-191. Li YC, Zhu BZ and Luo YB (2007). Agrobacterium-mediated transformation of tomato with anti-LeERF2 gene. Food Sci. 28: 327-331. Ling W, Liang S, Ping L, Wang YJ, et al. (2009). Cloning of ABA biosynthesis key enzyme NCED gene from tomato fruit and its RNA interference genetic transformation. J. China Agri. Univ. 14: 54-60. Liqiong Z, Shaosong Z, Hongmei C, Chengyun L, et al. (2002). Studies on transformation of antisense ACCase gene into tomatoes. J. Yunnan Univ. 24: 393-397. McCormick S, Niedermeyer J, Fry J, Barnason A, et al. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81-84. Meissner R, Jacobson Y, Melamed S, Levyatuv S, et al. (1997). A new model system for tomato genetics. Plant J. 12: 1465-1472. Min YS (2009). Mathematical Statistics. Science Press, Beijing. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15: 473-497. Pozueta-Romero J, Houlné G, Cañas L, Schantz R, et al. (2001). Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tiss. Organ Cult. 67: 173-180. Ross PJ (1988). Taguchi techniques for quality engineering. Loss function, orthogonal experiments, parameter and tolerance design. McGraw-Hill, New York. Van Roekel JSC, Damm B, Melchers LS and Hoekema A (1993). Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep. 12: 644-647. Xia ML, Wei SL and Fu JL (2004). Progress on genetic transformation of tomato mediated by Agrobacterium tumefaciens. J. Northeast Agricult. Univ. 35: 129-134. Yan H, Xang GC and Jun CL (2004). Agrobacterium-mediated transformation of tomoto with IPT and ETR121 gene and plant regeneration. J. Nanjing Normal Uiniv. 27: 83-87. Ying CY, Huang XQ, Guo YQ, Zhong LL, et al. (2008). Optimization of tomato genetic transformation, kanamycin-resistant screening and seed selection. Nan. Fang Yi Ke Da. Xue Xue Bao 28: 1117-1122. PMid:18676241 Zen C and Cheng Z (2008). Optimal research on Agrobacterium-mediated transformation systems of tomato (Lycopersicon esculentum). J. Zhejiang Univ. (Agricult. Life Sci.). 34: 615-620.