Publications

Found 5 results
Filters: Author is P. Wei  [Clear All Filters]
2016
L. Lu, Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., Zhang, P. Y., Lu, L., Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., and Zhang, P. Y., Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011 Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327 Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043 Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042 Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38 Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929. Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088. Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058 Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038 Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027 Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261 Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004 Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108 Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2 Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377 Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046 Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9 Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021 Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306 Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
L. Lu, Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., Zhang, P. Y., Lu, L., Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., and Zhang, P. Y., Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011 Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327 Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043 Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042 Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38 Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929. Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088. Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058 Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038 Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027 Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261 Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004 Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108 Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2 Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377 Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046 Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9 Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021 Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306 Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
2013
Q. Zou, Wei, P., Xu, Q., Zheng, H. Z., Tang, B., and Wang, S. G., cDNA cloning and characterization of two trehalases from Spodoptera litura (Lepidoptera; Noctuidade), vol. 12, pp. 901-915, 2013.
Chen J, Tang B, Chen H, Yao Q, et al. (2010). Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One 5: e10133. http://dx.doi.org/10.1371/journal.pone.0010133 PMid:20405036 PMCid:2853572   Crowe JH, Crowe LM and Chapman D (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223: 701-703. http://dx.doi.org/10.1126/science.223.4637.701 PMid:17841031   Davidson P and Sun WQ (2001). Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg. Pharm. Res. 18: 474-479. http://dx.doi.org/10.1023/A:1011002326825 PMid:11451034   de Almeida FM, Bonini BM, Beton D, Jorge JA, et al. (2009). Heterologous expression in Escherichia coli of Neurospora crassa neutral trehalase as an active enzyme. Protein Expr. Purif. 65: 185-189. http://dx.doi.org/10.1016/j.pep.2008.11.010 PMid:19073263   Elbein AD, Pan YT, Pastuszak I and Carroll D (2003). New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17R-27R. http://dx.doi.org/10.1093/glycob/cwg047 PMid:12626396   Eleutherio EC, Araujo PS and Panek AD (1993). Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1156: 263-266. http://dx.doi.org/10.1016/0304-4165(93)90040-F   Frison M, Parrou JL, Guillaumot D, Masquelier D, et al. (2007). The Arabidopsis thaliana trehalase is a plasma membrane-bound enzyme with extracellular activity. FEBS Lett. 581: 4010-4016. http://dx.doi.org/10.1016/j.febslet.2007.07.036 PMid:17673210   Kamimura M, Takahashi M, Tomita S, Fujiwara H, et al. (1999). Expression of ecdysone receptor isoforms and trehalase in the anterior silk gland of Bombyx mori during an extra larval molt and precocious pupation induced by 20-hydroxyecdysone administration. Arch. Insect Biochem. Physiol. 41: 79-88. http://dx.doi.org/10.1002/(SICI)1520-6327(1999)41:2<79::AID-ARCH4>3.0.CO;2-7   Lee JH, Tsuji M, Nakamura M, Nishimoto M, et al. (2001). Purification and identification of the essential ionizable groups of honeybee, Apis mellifera L., trehalase. Biosci. Biotechnol. Biochem. 65: 2657-2665. http://dx.doi.org/10.1271/bbb.65.2657 PMid:11826961   Lee JH, Saito S, Mori H, Nishimoto M, et al. (2007). Molecular cloning of cDNA for trehalase from the European honeybee, Apis mellifera L., and its heterologous expression in Pichia pastoris. Biosci. Biotechnol. Biochem. 71: 2256-2265. http://dx.doi.org/10.1271/bbb.70239 PMid:17827701   Mariano AC, Santos R, Gonzalez MS, Feder D, et al. (2009). Synthesis and mobilization of glycogen and trehalose in adult male Rhodnius prolixus. Arch. Insect Biochem. Physiol. 72: 1-15. http://dx.doi.org/10.1002/arch.20319 PMid:19514081   Mitsumasu K, Azuma M, Niimi T, Yamashita O, et al. (2005). Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut. Insect Mol. Biol. 14: 501-508. http://dx.doi.org/10.1111/j.1365-2583.2005.00581.x PMid:16164606   Mitsumasu K, Azuma M, Niimi T, Yamashita O, et al. (2008). Changes in the expression of soluble and integral-membrane trehalases in the midgut during metamorphosis in Bombyx mori. Zoolog. Sci. 25: 693-698. http://dx.doi.org/10.2108/zsj.25.693 PMid:18828655   Parkinson NM, Conyers CM, Keen JN, MacNicoll AD, et al. (2003). cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134: 513-520. http://dx.doi.org/10.1016/S1532-0456(03)00041-3   Sato K, Komoto M, Sato T, Enei H, et al. (1997). Baculovirus-mediated expression of a gene for trehalase of the Mealworm Beetle, Tenebrio molitor, in insect cells, SF-9, and larvae of the cabbage armyworm, Mamestra brassicae. Insect Biochem. Mol. Biol. 27: 1007-1016. http://dx.doi.org/10.1016/S0965-1748(97)00059-3   Silva MC, Terra WR and Ferreira C (2010). The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda. Insect Biochem. Mol. Biol. 40: 733-741. http://dx.doi.org/10.1016/j.ibmb.2010.07.006 PMid:20691783   Su ZH, Sato Y and Yamashita O (1993). Purification, cDNA cloning and northern blot analysis of trehalase of pupal midgut of the silkworm, Bombyx mori. Biochim. Biophys. Acta 1173: 217-224. http://dx.doi.org/10.1016/0167-4781(93)90184-F   Su ZH, Ikeda M, Sato Y, Saito H, et al. (1994). Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. Biochim. Biophys. Acta 1218: 366-374. http://dx.doi.org/10.1016/0167-4781(94)90190-2   Sumida M and Yamashita O (1977). Trehalase transformation in silkworm midgut during metamorphosis. J. Comp. Physiol. 115: 241-253.   Sumida M and Yamashita O (1983). Purification and some properties of soluble trehalase from midgut of pharate adult of the silkworm, Bombyx mori. Insect Biochem. 13: 257-265. http://dx.doi.org/10.1016/0020-1790(83)90047-1   Sun WQ and Davidson P (1998). Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization. Biochim. Biophys. Acta 1425: 235-244. http://dx.doi.org/10.1016/S0304-4165(98)00076-2   Takiguchi M, Niimi T, Su ZH and Yaginuma T (1992). Trehalase from male accessory gland of an insect, Tenebrio molitor. cDNA sequencing and developmental profile of the gene expression. Biochem. J. 288: 19-22. PMid:1445264 PMCid:1132073   Tang B, Chen X, Liu Y, Tian H, et al. (2008). Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Mol. Biol. 9: 51. http://dx.doi.org/10.1186/1471-2199-9-51 PMid:18492231 PMCid:2424068   Tatun N, Singtripop T, Tungjitwitayakul J and Sakurai S (2008). Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. Insect Biochem. Mol. Biol. 38: 788-795. http://dx.doi.org/10.1016/j.ibmb.2008.05.003 PMid:18625402   Ujita M, Yamanaka M, Maeno Y, Yoshida K, et al. (2011). Expression of active and inactive recombinant soluble trehalase using baculovirus-silkworm expression system and their glycan structures. J. Biosci. Bioeng. 111: 22-25. http://dx.doi.org/10.1016/j.jbiosc.2010.08.020 PMid:20870456   Wegener G, Tschiedel V, Schloder P and Ando O (2003). The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia. J. Exp. Biol. 206: 1233-1240. http://dx.doi.org/10.1242/jeb.00217 PMid:12604583   Wyatt GR (1967). The biochemistry of sugars and polysaccharides in insects. Adv. Insect Physiol. 4: 287-360. http://dx.doi.org/10.1016/S0065-2806(08)60210-6   Yamashita O, Sumida M and Hasegawa K (1974). Developmental changes in midgut trehalase activity and its localization in the silkworm, Bombyx mori. J. Insect Physiol. 20: 1079-1085. http://dx.doi.org/10.1016/0022-1910(74)90149-8   Yamoah E, Jones EE, Weld RJ, Suckling DM, et al. (2008). Microbial population and diversity on the exoskeletons of 4 insect species associated with gorse (Ulex europaeus L.). Aust. J. Entomol. 47: 370-379. http://dx.doi.org/10.1111/j.1440-6055.2008.00655.x