Publications
Found 1 results
Filters: Author is S.Q. Liao [Clear All Filters]
“Target replacement strategy for selection of DNA aptamers against the Fc region of mouse IgG”, vol. 12, pp. 1399-1410, 2013.
, Chu TC, Twu KY, Ellington AD and Levy M (2006). Aptamer mediated siRNA delivery. Nucleic Acids Res. 34: e73.
http://dx.doi.org/10.1093/nar/gkl388
PMid:16740739 PMCid:1474074
Cox JC and Ellington AD (2001). Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9: 2525-2531.
http://dx.doi.org/10.1016/S0968-0896(01)00028-1
Ellington AD and Szostak JW (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818-822.
http://dx.doi.org/10.1038/346818a0
PMid:1697402
Hall B, Arshad S, Seo K, Bowman C, et al. (2010). In vitro selection of RNA aptamers to a protein target by filter immobilization. Curr. Protoc. Nucleic Acid Chem. Chapter 9: Unit-27.
Keefe AD and Cload ST (2008). SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12: 448-456.
http://dx.doi.org/10.1016/j.cbpa.2008.06.028
PMid:18644461
Mairal T, Ozalp VC, Lozano SP, Mir M, et al. (2008). Aptamers: molecular tools for analytical applications. Anal. Bioanal. Chem. 390: 989-1007.
http://dx.doi.org/10.1007/s00216-007-1346-4
PMid:17581746
Mendonsa SD and Bowser MT (2004). In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76: 5387-5392.
http://dx.doi.org/10.1021/ac049857v
PMid:15362896
Miyakawa S, Oguro A, Ohtsu T, Imataka H, et al. (2006). RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA 12: 1825-1834.
http://dx.doi.org/10.1261/rna.2169406
PMid:16940549 PMCid:1581983
Nitsche A, Kurth A, Dunkhorst A, Panke O, et al. (2007). One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7: 48.
http://dx.doi.org/10.1186/1472-6750-7-48
PMid:17697378 PMCid:1994675
Sakai N, Masuda H, Akitomi J, Yagi H, et al. (2008). RNA aptamers specifically interact with the Fc region of mouse immunoglobulin G. Nucleic Acids Symp. Ser. 487-488.
http://dx.doi.org/10.1093/nass/nrn247
PMid:18776466
Shamah SM, Healy JM and Cload ST (2008). Complex target SELEX. Acc. Chem. Res. 41: 130-138.
http://dx.doi.org/10.1021/ar700142z
PMid:18193823
Stoltenburg R, Reinemann C and Strehlitz B (2005). FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383: 83-91.
http://dx.doi.org/10.1007/s00216-005-3388-9
PMid:16052344
Tuerk C and Gold L (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505-510.
http://dx.doi.org/10.1126/science.2200121
PMid:2200121
Yoshida Y, Sakai N, Masuda H, Furuichi M, et al. (2008). Rabbit antibody detection with RNA aptamers. Anal. Biochem. 375: 217-222.
http://dx.doi.org/10.1016/j.ab.2008.01.005
PMid:18252191
Yoshida Y, Horii K, Sakai N, Masuda H, et al. (2009). Antibody-specific aptamer-based PCR analysis for sensitive protein detection. Anal. Bioanal. Chem. 395: 1089-1096.
http://dx.doi.org/10.1007/s00216-009-3041-0
PMid:19705107