Publications

Found 13 results
Filters: Author is Y. Feng  [Clear All Filters]
2016
C. Y. Bai, Shi, X. Y., He, J., Xue, J., Feng, Y., Bai, C. Y., Shi, X. Y., He, J., Xue, J., and Feng, Y., Association between IL-10 genetic variations and cervical cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
C. Y. Bai, Shi, X. Y., He, J., Xue, J., Feng, Y., Bai, C. Y., Shi, X. Y., He, J., Xue, J., and Feng, Y., Association between IL-10 genetic variations and cervical cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
L. Ren, Wang, H. W., Xu, Y., Feng, Y., Zhang, H. F., and Wang, K. H., Sequencing of Gag/Env association with HIV genotyping resolution and HIV-related epidemiologic studies of HIV in China, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Foundation for Science and Technology Planning Project of Yunnan Provincial Bureau of Health (#2012WS63), the Key Joint Funds of the Natural Science Foundation of Yunnan Province and Kunming Medical University (#2014FB021), the Yunnan Institute of Digestive Disease Institute (#2014NS121), the National Science Foundation of China (#81360069), the Academician Workstation of Yunnan Province, the Foundation for Innovative Group of the Gastrointestinal Surgery of Yunnan Province (#2012HC013), and the Foundation of Medical Leading Talent of Yunnan Province (#L-201205). REFERENCESAraújo LV, Soares MA, Oliveira SM, Chequer P, et al (2006). DBCollHIV: a database system for collaborative HIV analysis in Brazil. Genet. Mol. Res. 5: 203-215. Bao Y, Tian D, Zheng YY, Xi HL, et al (2014). Characteristics of HIV-1 natural drug resistance-associated mutations in former paid blood donors in Henan Province, China. PLoS One 9: e89291. http://dx.doi.org/10.1371/journal.pone.0089291 Cavalli-Sforza LL, Menozzi P and Piazza A (1994). The history and geography of human genes. Princeton, Princeton university press. Princeton. Chen M, Yang L, Ma Y, Su Y, et al (2013). Emerging variability in HIV-1 genetics among recently infected individuals in Yunnan, China. PLoS One 8: e60101. http://dx.doi.org/10.1371/journal.pone.0060101 Chen S, Cai W, He J, Vidal N, et al (2012). Molecular epidemiology of human immunodeficiency virus type 1 in Guangdong province of southern China. PLoS One 7: e48747. http://dx.doi.org/10.1371/journal.pone.0048747 Chen X, Zheng Y, Li H, Mamadou D, et al (2011). The Vpr gene polymorphism of human immunodeficiency virus type 1 in China and its clinical significance. Curr. HIV Res. 9: 295-299. http://dx.doi.org/10.2174/157016211797635937 Chen Y, Chen S, Kang J, Fang H, et al (2014). Evolving molecular epidemiological profile of human immunodeficiency virus 1 in the southwest border of China. PLoS One 9: e107578. http://dx.doi.org/10.1371/journal.pone.0107578 Cunha LK, Kashima S, Amarante MF, Haddad R, et al (2012). Distribution of human immunodeficiency virus type 1 subtypes in the State of Amazonas, Brazil, and subtype C identification. Braz. J. Med. Biol. Res. 45: 104-112. http://dx.doi.org/10.1590/S0100-879X2012007500003 Dai D, Shang H, Han XX, Zhao B, et al (2015). The biological characteristics of predominant strains of HIV-1 genotype: modeling of HIV-1 infection among men who have sex with men. J. Med. Virol. 87: 557-568. http://dx.doi.org/10.1002/jmv.24116 Excoffier L, Laval G, Schneider S, et al (2007). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50. He X, Xing H, Ruan Y, Hong K, Group for HIV Molecular Epidemiologic Surveyet al (2012). A comprehensive mapping of HIV-1 genotypes in various risk groups and regions across China based on a nationwide molecular epidemiologic survey. PLoS One 7: e47289. http://dx.doi.org/10.1371/journal.pone.0047289 Holguín A, López M, Soriano V, et al (2008). Reliability of rapid subtyping tools compared to that of phylogenetic analysis for characterization of human immunodeficiency virus type 1 non-B subtypes and recombinant forms. J. Clin. Microbiol. 46: 3896-3899. http://dx.doi.org/10.1128/JCM.00515-08 Lan YC, Elbeik T, Dileanis J, Ng V, et al (2008). Molecular epidemiology of HIV-1 subtypes and drug resistant strains in Taiwan. J. Med. Virol. 80: 183-191. http://dx.doi.org/10.1002/jmv.21065 Li L, Sun B, Zeng H, Sun Z, et al (2014a). Relatively high prevalence of drug resistance among antiretroviral-naive patients from Henan, Central China. AIDS Res. Hum. Retroviruses 30: 160-164. http://dx.doi.org/10.1089/aid.2013.0144 Li X, Feng Y, Yang Y, Chen Y, et al (2014b). Near full-length genome sequence of a novel HIV-1 recombinant form (CRF01_AE/B) detected among men who have sex with men in Jilin Province, China. AIDS Res. Hum. Retroviruses 30: 701-705. http://dx.doi.org/10.1089/aid.2014.0008 Mansky LM, Temin HM, et al (1995). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69: 5087-5094. Pang W, Zhang C, Duo L, Zhou YH, et al (2012). Extensive and complex HIV-1 recombination between B′, C and CRF01_AE among IDUs in south-east Asia. AIDS 26: 1121-1129. http://dx.doi.org/10.1097/QAD.0b013e3283522c97 Perelson AS, Neumann AU, Markowitz M, Leonard JM, et al (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582-1586. http://dx.doi.org/10.1126/science.271.5255.1582 Preston BD, Poiesz BJ, Loeb LA, et al (1988). Fidelity of HIV-1 reverse transcriptase. Science 242: 1168-1171. http://dx.doi.org/10.1126/science.2460924 Qiu Z, Xing H, Wei M, Duan Y, et al (2005). Characterization of five nearly full-length genomes of early HIV type 1 strains in Ruili city: implications for the genesis of CRF07_BC and CRF08_BC circulating in China. AIDS Res. Hum. Retroviruses 21: 1051-1056. http://dx.doi.org/10.1089/aid.2005.21.1051 Robertson DL, Sharp PM, McCutchan FE, Hahn BH, et al (1995). Recombination in HIV-1. Nature 374: 124-126. http://dx.doi.org/10.1038/374124b0 Robertson DL, Anderson JP, Bradac JA, Carr JK, et al (2000). HIV-1 nomenclature proposal. Science 288: 55-56. http://dx.doi.org/10.1126/science.288.5463.55d Sides TL, Akinsete O, Henry K, Wotton JT, et al (2005). HIV-1 subtype diversity in Minnesota. J. Infect. Dis. 192: 37-45. http://dx.doi.org/10.1086/430322 Su L, Graf M, Zhang Y, von Briesen H, et al (2000). Characterization of a virtually full-length human immunodeficiency virus type 1 genome of a prevalent intersubtype (C/B′) recombinant strain in China. J. Virol. 74: 11367-11376. http://dx.doi.org/10.1128/JVI.74.23.11367-11376.2000 Tan Y, Chan D, Chan D, Ip PK, et al (2010). High genetic diversity of HIV-1 viruses in Macao, China. J. Infect. 61: 164-172. http://dx.doi.org/10.1016/j.jinf.2010.04.012 Vallari A, Holzmayer V, Harris B, Yamaguchi J, et al (2011). Confirmation of putative HIV-1 group P in Cameroon. J. Virol. 85: 1403-1407. http://dx.doi.org/10.1128/JVI.02005-10 Yan H, Ding Y, Wong FY, Ning Z, et al (2015). Epidemiological and molecular characteristics of HIV infection among money boys and general men who have sex with men in Shanghai, China. Infect. Genet. Evol. 31: 135-141. http://dx.doi.org/10.1016/j.meegid.2015.01.022 Yao X, Wang H, Yan P, Lu Y, et al (2012). Rising epidemic of HIV-1 infections among general populations in Fujian, China. J. Acquir. Immune Defic. Syndr. 60: 328-335. http://dx.doi.org/10.1097/QAI.0b013e31824f19f5 Yao YG, Kong QP, Bandelt HJ, Kivisild T, et al (2002). Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am. J. Hum. Genet. 70: 635-651. http://dx.doi.org/10.1086/338999 Ye JR, Yu SQ, Lu HY, Wang WS, et al (2012). Genetic diversity of HIV type 1 isolated from newly diagnosed subjects (2006-2007) in Beijing, China. AIDS Res. Hum. Retroviruses 28: 119-123. http://dx.doi.org/10.1089/aid.2011.0012 Zeng H, Sun Z, Liang S, Li L, et al (2012). Emergence of a new HIV type 1 CRF01_AE variant in Guangxi, Southern China. AIDS Res. Hum. Retroviruses 28: 1352-1356. http://dx.doi.org/10.1089/aid.2011.0364 Zhang L, Wang YJ, Wang BX, Yan JW, et al (2015). Prevalence of HIV-1 subtypes among men who have sex with men in China: a systematic review. Int. J. STD AIDS 26: 291-305. http://dx.doi.org/10.1177/0956462414543841 Zhou F, Luo AD, Jiang JX, Tao TX, et al (2011). AIDS molecular epidemiological survey in Laibin. J. Trop. Med. 11: 420-423.  
2013
Y. Feng, Ri, J., Wan, H. Y., Shi, G. C., Li, Q. Y., and Fan, L., Meta-analysis demonstrates lack of association between the ACE gene I/D polymorphism and obstructive sleep apnea-hypopnea syndrome occurrence and severity, vol. 12, pp. 74-84, 2013.
Ahmadi N, Shapiro GK, Chung SA and Shapiro CM (2009). Clinical diagnosis of sleep apnea based on single night of polysomnography vs. two nights of polysomnography. Sleep Breath. 13: 221-226. http://dx.doi.org/10.1007/s11325-008-0234-2 PMid:19067010   Barcelo A, Elorza MA, Barbe F, Santos C, et al. (2001). Angiotensin converting enzyme in patients with sleep apnoea syndrome: plasma activity and gene polymorphisms. Eur. Respir. J. 17: 728-732. http://dx.doi.org/10.1183/09031936.01.17407280 PMid:11401071   Barley J, Blackwood A, Carter ND, Crews DE, et al. (1994). Angiotensin converting enzyme insertion/deletion polymorphism: association with ethnic origin. J. Hypertens. 12: 955-957. http://dx.doi.org/10.1097/00004872-199408000-00014 PMid:7814855   Benjamin JA, Moller M, Ebden P, Bartle I, et al. (2008). Serum angiotensin converting enzyme and the obstructive sleep apnea hypopnea syndrome. J. Clin. Sleep Med. 4: 325-331. PMid:18763423 PMCid:2542488   Bostrom KB, Hedner J, Melander O, Grote L, et al. (2007). Interaction between the angiotensin-converting enzyme gene insertion/deletion polymorphism and obstructive sleep apnoea as a mechanism for hypertension. J. Hypertens. 25: 779-783. http://dx.doi.org/10.1097/HJH.0b013e328017f6d5 PMid:17351369   Gu XQ, Liu DB and Wan GP (2006). Polymorphism of angiotensin converting enzyme genes in children with obstructive sleep apnea-syndrome. Zhonghua Er. Ke. Za Zhi. 44: 874-875. PMid:17274884   Kanazawa H, Okamoto T, Hirata K and Yoshikawa J (2000). Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 162: 1235-1238. http://dx.doi.org/10.1164/ajrccm.162.4.9909120 PMid:11029323   Koyama RG, Drager LF, Lorenzi-Filho G, Cintra FD, et al. (2009). Reciprocal interactions of obstructive sleep apnea and hypertension associated with ACE I/D polymorphism in males. Sleep Med. 10: 1107-1111. http://dx.doi.org/10.1016/j.sleep.2008.12.012 PMid:19482546   Li S, Cao J and Chen BY (2004a). Investigation of the angiotensin-converting enzyme gene polymorphism in obstructive sleep apnea hypopnea syndrome. Zhongguo Hu Xi Yu Wei Zhong Jian Hu Za Zhi 3: 350-353.   Li Y, Zhang W, Wang T, Lu H, et al. (2004b). Study on the polymorphism of angiotensin converting enzyme genes and serum angiotensin II level in patients with obstructive sleep apnea hypopnea syndrome accompanied hypertension. Lin. Chuang. Er. Bi Yan. Hou Ke. Za Zhi 18: 456-459. PMid:15571307   Li WQ, Li WQ, Li CQ, Liao WS, et al. (2006). Investigation of the angiotensin-converting enzyme gene polymorphism in obstructive sleep apnea hypopnea syndrome patients with XU YU ZHENG. Zhongguo Zhong Yi Yao Ke Ji 13: 75-79.   Lin L, Finn L, Zhang J, Young T, et al. (2004). Angiotensin-converting enzyme, sleep-disordered breathing, and hypertension. Am. J. Respir. Crit. Care Med. 170: 1349-1353. http://dx.doi.org/10.1164/rccm.200405-616OC PMid:15447944   Ogus C, Ket S, Bilgen T, Keser I, et al. (2010). Insertion/deletion polymorphism and serum activity of the angiotensin-converting enzyme in Turkish patients with obstructive sleep apnea syndrome. Biochem. Genet. 48: 516-523. http://dx.doi.org/10.1007/s10528-010-9335-2 PMid:20182789   Ozen S, Alikasifoglu M, Tuncbilek E, Bakkaloglu A, et al. (1997). Polymorphisms in angiotensin converting enzyme gene and reflux nephropathy: a genetic predisposition to scar formation? Nephrol. Dial. Transplant. 12: 2031-2033. http://dx.doi.org/10.1093/oxfordjournals.ndt.a027788 PMid:9306373   Palmer LJ, Buxbaum SG, Larkin EK, Patel SR, et al. (2004). Whole genome scan for obstructive sleep apnea and obesity in African-American families. Am. J. Respir. Crit. Care Med. 169: 1314-1321. http://dx.doi.org/10.1164/rccm.200304-493OC PMid:15070816   Ping F, Zhao JC, Zhang XQ, Gao FQ, et al. (2001). Association of the polymorphism of angiotensin converting enzyme with OSAS and OSAS accompanied by hypertension. Chin. Gen. Pract. 4: 24-26.   Rohatgi PK (1982). Serum angiotensin converting enzyme in pulmonary disease. Lung 160: 287-301. http://dx.doi.org/10.1007/BF02719304 PMid:6292587   Seckin D, Ilhan N, Ilhan N and Ozbay Y (2006). The relationship between ACE insertion/deletion polymorphism and coronary artery disease with or without myocardial infarction. Clin. Biochem. 39: 50-54. http://dx.doi.org/10.1016/j.clinbiochem.2005.10.003 PMid:16303122   Varvarigou V, Dahabreh IJ, Malhotra A and Kales SN (2011). A review of genetic association studies of obstructive sleep apnea: field synopsis and meta-analysis. Sleep 34: 1461-1468. PMid:22043116 PMCid:3198201   Xiao Y, Huang X, Qiu C, Zhu X, et al. (1999). Angiotensin I-converting enzyme gene polymorphism in Chinese patients with obstructive sleep apnea syndrome. Chin. Med. J. 112: 701-704.   Yaggi HK, Concato J, Kernan WN, Lichtman JH, et al. (2005). Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 353: 2034-2041. http://dx.doi.org/10.1056/NEJMoa043104 PMid:16282178   Yakut T, Karkucak M, Ursavas A, Gulten T, et al. (2010). Lack of association of ACE gene I/D polymorphism with obstructive sleep apnea syndrome in Turkish patients. Genet Mol Res. 9: 734-738. http://dx.doi.org/10.4238/vol9-2gmr755 PMid:20449805   Zhang J, Zhao B, Gesongluobu, Sun Y, et al. (2000). Angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism in hypertensive patients with different degrees of obstructive sleep apnea. Hypertens. Res. 23: 407- 411. http://dx.doi.org/10.1291/hypres.23.407 PMid:11016793   Zhang LQ, Yao WZ, He QY, Wang YZ, et al. (2004). Association of polymorphisms in the angiotensin system genes with obstructive sleep apnea-hypopnea syndrome. Zhonghua Jie. He. He. Hu Xi Za Zhi 27: 507-510. PMid:15387996
R. Ji, Feng, Y., and Zhan, W. W., Updated analysis of studies on the cytotoxic T-lymphocyte-associated antigen-4 gene A49G polymorphism and Hashimoto's thyroiditis risk, vol. 12, pp. 1421-1430, 2013.
Almasi S, Erfani N, Mojtahedi Z, Rajaee A, et al. (2006). Association of CTLA-4 gene promoter polymorphisms with systemic sclerosis in Iranian population. Genes Immun. 7: 401-406. http://dx.doi.org/10.1038/sj.gene.6364313 PMid:16775619   Awata T, Kurihara S, Iitaka M, Takei S, et al. (1998). Association of CTLA-4 gene A-G polymorphism (IDDM12 locus) with acute-onset and insulin-depleted IDDM as well as autoimmune thyroid disease (Graves' disease and Hashimoto's thyroiditis) in the Japanese population. Diabetes 47: 128-129. PMid:9421386   Balbi G, Ferrera F, Rizzi M, Piccioli P, et al. (2007). Association of -318 C/T and +49 A/G cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms with a clinical subset of Italian patients with systemic sclerosis. Clin. Exp. Immunol. 149: 40-47. http://dx.doi.org/10.1111/j.1365-2249.2007.03394.x PMid:17459075 PMCid:1942023   Ban Y, Davies TF, Greenberg DA, Kissin A, et al. (2003). Analysis of the CTLA-4, CD28, and inducible costimulator (ICOS) genes in autoimmune thyroid disease. Genes Immun. 4: 586-593. http://dx.doi.org/10.1038/sj.gene.6364018 PMid:14647199   Baniasadi V, Narain N, Goswami R and Das SN (2006). Promoter region -318 C/T and -1661 A/G CTLA-4 single nucleotide polymorphisms and type 1 diabetes in North Indians. Tissue Antigens 67: 383-389. http://dx.doi.org/10.1111/j.1399-0039.2006.00595.x PMid:16671945   Benhatchi K, Jochmanova I, Habalova V, Wagnerova H, et al. (2011). CTLA4 exon1 A49G polymorphism in Slovak patients with rheumatoid arthritis and Hashimoto thyroiditis-results and the review of the literature. Clin. Rheumatol. 30: 1319-1324. http://dx.doi.org/10.1007/s10067-011-1752-z PMid:21503616   Bicek A, Zaletel K, Gaberscek S, Pirnat E, et al. (2009). 49A/G and CT60 polymorphisms of the cytotoxic T-lymphocyte-associated antigen 4 gene associated with autoimmune thyroid disease. Hum. Immunol. 70: 820-824. http://dx.doi.org/10.1016/j.humimm.2009.06.016 PMid:19559744   Dallos T, Avbelj M, Barak L, Zapletalova J, et al. (2008). CTLA-4 gene polymorphisms predispose to autoimmune endocrinopathies but not to celiac disease. Neuro Endocrinol. Lett. 29: 334-340. PMid:18580850   Donner H, Braun J, Seidl C, Rau H, et al. (1997). Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto's thyroiditis and Addison's disease. J. Clin. Endocrinol. Metab. 82: 4130-4132. http://dx.doi.org/10.1210/jc.82.12.4130 PMid:9398726   Farra C, Awwad J, Fadlallah A, Sebaly G, et al. (2012). Genetics of autoimmune thyroid disease in the Lebanese population. J. Community Genet. 3: 259-264. http://dx.doi.org/10.1007/s12687-012-0085-1 PMid:22392440 PMCid:3461226   Kavvoura FK and Ioannidis JP (2005). CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. Am. J. Epidemiol. 162: 3-16. http://dx.doi.org/10.1093/aje/kwi165 PMid:15961581   Kavvoura FK, Akamizu T, Awata T, Ban Y, et al. (2007). Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J. Clin. Endocrinol. Metab. 92: 3162-3170. http://dx.doi.org/10.1210/jc.2007-0147 PMid:17504905   Kouki T, Sawai Y, Gardine CA, Fisfalen ME, et al. (2000). CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves' disease. J. Immunol. 165: 6606- 6611. PMid:11086105   Kucharska AM, Gorska E, Wasik M, Pyrzak B, et al. (2009). Expression of CD152 (CTLA-4) in children with autoimmune thyroiditis and +49 A/G polymorphism of exon 1 of the CTLA-4 gene. J. Physiol. Pharmacol. 60 (Suppl 5): 77-80. PMid:20134044   Lee YH, Harley JB and Nath SK (2005). CTLA-4 polymorphisms and systemic lupus erythematosus (SLE): a meta-analysis. Hum. Genet. 116: 361-367. http://dx.doi.org/10.1007/s00439-004-1244-1 PMid:15688186   Park YJ, Chung HK, Park DJ, Kim WB, et al. (2000). Polymorphism in the promoter and exon 1 of the cytotoxic T lymphocyte antigen-4 gene associated with autoimmune thyroid disease in Koreans. Thyroid 10: 453-459. PMid:10907987   Petrone A, Giorgi G, Mesturino CA, Capizzi M, et al. (2001). Association of DRB1*04-DQB1*0301 haplotype and lack of association of two polymorphic sites at CTLA-4 gene with Hashimoto's thyroiditis in an Italian population. Thyroid 11: 171-175. http://dx.doi.org/10.1089/105072501300042901 PMid:11288988   Sahin M, Gursoy A and Erdogan MF (2009). Cytotoxic T lymphocyte-associated molecule-4 polymorphism in Turkish patients with Hashimoto thyroiditis. Int. J. Immunogenet. 36: 103-106. http://dx.doi.org/10.1111/j.1744-313X.2009.00831.x PMid:19284444   Scheipers P and Reiser H (1998). Fas-independent death of activated CD4(+) T lymphocytes induced by CTLA-4 crosslinking. Proc. Natl. Acad. Sci. U. S. A. 95: 10083-10088. http://dx.doi.org/10.1073/pnas.95.17.10083 PMid:9707604 PMCid:21465   Shi ZY, Yang BZ, Wang LB, Wu RF, et al. (2010). Study of the A/G (49) polymorphism of CTLA-4 gene exon 1 in autoimmune thyroid diseases. J. Ningxia Med. Univ. 32: 330-333.   Terauchi M, Yanagawa T, Ishikawa N, Ito K, et al. (2003). Interactions of HLA-DRB4 and CTLA-4 genes influence thyroid function in Hashimoto's thyroiditis in Japanese population. J. Endocrinol. Invest. 26: 1208-1212. PMid:15055474   Tomer Y (2001). Unraveling the genetic susceptibility to autoimmune thyroid diseases: CTLA-4 takes the stage. Thyroid 11: 167-169. http://dx.doi.org/10.1089/105072501300042884 PMid:11288987   Tomoyose T, Komiya I, Takara M, Yabiku K, et al. (2002). Cytotoxic T-lymphocyte antigen-4 gene polymorphisms and human T-cell lymphotrophic virus-1 infection: their associations with Hashimoto's thyroiditis in Japanese patients. Thyroid 12: 673-677. http://dx.doi.org/10.1089/105072502760258640 PMid:12225635   Ueda H, Howson JM, Esposito L, Heward J, et al. (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423: 506-511. http://dx.doi.org/10.1038/nature01621 PMid:12724780   Wang LB, Wang F, Ma RX and Yu HW (2001). Study of the A/G (49) polymorphism of CTLA-4 gene exon 1 in autoimmune thyroid diseases. Chin. Immunol. J. 17: 116-118.   Weetman AP (2003). Autoimmune thyroid disease: propagation and progression. Eur. J. Endocrinol. 148: 1-9. http://dx.doi.org/10.1530/eje.0.1480001 PMid:12534350   Yang J, Qin Q, Yan N, Zhu YF, et al. (2012). CD40 C/T(-1) and CTLA-4 A/G(49) SNPs are associated with autoimmune thyroid diseases in the Chinese population. Endocrine 41: 111-115. http://dx.doi.org/10.1007/s12020-011-9510-1 PMid:21866398   Yesilkaya E, Koc A, Bideci A, Camurdan O, et al. (2008). CTLA4 gene polymorphisms in children and adolescents with autoimmune thyroid diseases. Genet. Test 12: 461-464. http://dx.doi.org/10.1089/gte.2008.0053 PMid:18752454   Yu ZY, Zhang JA, Maier HB, Wang Y, et al. (2008). Association of polymorphism of protein tyrosine phosphatase nonreceptor-22 gene with AITD. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 24: 804-807. PMid:18687223   Zhou WX, Shi BY, Wang HF and Hou MQ (2003). Association of CTLA-4 gene polymorphism with AITDs. J. Xi'an Jiaotong Univ. (Med. Sci.) 24: 170-173.