Found 2 results
Filters: Author is D. Bonatto  [Clear All Filters]
R. Matuo, Sousa, F. G., Bonatto, D., Mielniczki-Pereira, A. A., Saffi, J., Soares, D. G., Escargueil, A. E., Larsen, A. K., and Henriques, J. A. P., ATP-dependent chromatin remodeling and histone acetyltransferases in 5-FU cytotoxicity in Saccharomyces cerevisiae, vol. 12, pp. 1440-1456, 2013.
Altaf M, Saksouk N and Cote J (2007). Histone modifications in response to DNA damage. Mutat. Res. 618: 81-90. PMid:17306843   Ataian Y and Krebs JE (2006). Five repair pathways in one context: chromatin modification during DNA repair. Biochem. Cell Biol. 84: 490-504. PMid:16936822   Aylon Y and Kupiec M (2004). New insights into the mechanism of homologous recombination in yeast. Mutat. Res. 566: 231-248. PMid:15082239   Bao Y and Shen X (2007). INO80 subfamily of chromatin remodeling complexes. Mutat. Res. 618: 18-29. PMid:17316710 PMCid:2699258   Benson LJ, Phillips JA, Gu Y, Parthun MR, et al. (2007). Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. J. Biol. Chem. 282: 836-842. PMid:17052979   Broomfield S, Hryciw T and Xiao W (2001). DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486: 167-184.   Campos EI and Reinberg D (2009). Histones: annotating chromatin. Annu. Rev. Genet. 43: 559-599. PMid:19886812   Cardone JM, Revers LF, Machado RM, Bonatto D, et al. (2006). Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair 5: 163-171. PMid:16202664   Clarke AS, Lowell JE, Jacobson SJ and Pillus L (1999). Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell Biol. 19: 2515-2526. PMid:10082517 PMCid:84044   Ding J, Miao ZH, Meng LH and Geng MY (2006). Emerging cancer therapeutic opportunities target DNA-repair systems. Trends Pharmacol. Sci. 27: 338-344. PMid:16697054   Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16: 979-990. PMid:15610740   Doyon Y and Côté J (2004). The highly conserved and multifunctional NuA4 HAT complex. Curr. Opin. Genet. Dev. 14: 147-154. PMid:15196461   Escargueil AE, Soares DG, Salvador M, Larsen AK, et al. (2008). What histone code for DNA repair? Mutat. Res. 658: 259-270. PMid:18296106   Falbo KB, Alabert C, Katou Y, Wu S, et al. (2009). Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat. Struct. Mol. Biol. 16: 1167-1172. PMid:19855395 PMCid:2974178   Gan GN, Wittschieben JP, Wittschieben BO and Wood RD (2008). DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res. 18: 174-183. PMid:18157155   Gangaraju VK and Bartholomew B (2007). Mechanisms of ATP dependent chromatin remodeling. Mutat. Res. 618: 3-17. PMid:17306844 PMCid:2584342   Gietz RD and Woods RA (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96.   Hargreaves DC and Crabtree GR (2011). ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21: 396-420. PMid:21358755 PMCid:3110148   Henikoff S and Ahmad K (2005). Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol. 21: 133-153. PMid:16212490   Huertas D, Sendra R and Munoz P (2009). Chromatin dynamics coupled to DNA repair. Epigenetics 4: 31-42. PMid:19218832   Karras GI and Jentsch S (2010). The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141: 255-267. PMid:20403322   Kufe DW and Major PP (1981). 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J. Biol. Chem. 256: 9802-9805. PMid:7275977   Kufe DW, Major PP, Egan EM and Loh E (1981). 5-Fluoro-2'-deoxyuridine incorporation in L1210 DNA. J. Biol. Chem. 256: 8885-8888. PMid:6455432   Loizou JI, Murr R, Finkbeiner MG, Sawan C, et al. (2006). Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5: 696-701. PMid:16582631   Matuo R, Sousa FG, Escargueil AE, Grivicich I, et al. (2009). 5-Fluorouracil and its active metabolite FdUMP cause DNA damage in human SW620 colon adenocarcinoma cell line. J. Appl. Toxicol. 29: 308-316. PMid:19115314   Matuo R, Sousa FG, Escargueil AE, Soares DG, et al. (2010). DNA repair pathways involved in repair of lesions induced by 5-fluorouracil and its active metabolite FdUMP. Biochem. Pharmacol. 79: 147-153. PMid:19712668   Minesinger BK and Jinks-Robertson S (2005). Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 169: 1939-1955. PMid:15687278 PMCid:1449579   Mizuguchi G, Shen X, Landry J, Wu WH, et al. (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303: 343-348. PMid:14645854   Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, et al. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119: 767-775. PMid:15607974   Noordhuis P, Holwerda U, Van der Wilt CL, van Groeningen CJ, et al. (2004). 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann. Oncol. 15: 1025-1032. PMid:15205195   Osley MA, Tsukuda T and Nickoloff JA (2007). ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat. Res. 618: 65-80. PMid:17291544 PMCid:1904433   Poletto NP, Rosado JO and Bonatto D (2009). Evaluation of cytotoxic and cytostatic effects in Saccharomyces cerevisiae by poissoner quantitative drop test. Basic Clin. Pharmacol. Toxicol. 104: 71-75. PMid:19152554   Prakash S, Johnson RE and Prakash L (2005). Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74: 317-353. PMid:15952890   Qin S and Parthun MR (2006). Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol. Cell Biol. 26: 3649-3658. PMid:16612003 PMCid:1447429   Raisner RM and Madhani HD (2006). Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr. Opin. Genet. Dev. 16: 119-124. PMid:16503125   Tamburini BA and Tyler JK (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell Biol. 25: 4903-4913. PMid:15923609 PMCid:1140608   van Attikum H and Gasser SM (2005a). ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4: 1011-1014. PMid:16082209   van Attikum H and Gasser SM (2005b). The histone code at DNA breaks: a guide to repair? Nat. Rev. Mol Cell Biol. 6: 757-765. PMid:16167054   Wyatt MD and Wilson DM III (2009). Participation of DNA repair in the response to 5-fluorouracil. Cell Mol. Life Sci. 66: 788-799. PMid:18979208 PMCid:2649968   Yu Y, Teng Y, Liu H, Reed SH, et al. (2005). UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc. Natl. Acad. Sci. U. S. A. 102: 8650-8655. PMid:15939881 PMCid:1150825
C. Dani, Oliboni, L. S., Prá, D., Bonatto, D., Santos, C. E. I., Yoneama, M. L., Dias, J. F., Salvador, M., and Henriques, J. A. P., Mineral content is related to antioxidant and antimutagenic properties of grape juice, vol. 11, pp. 3154-3163, 2012.
Almeida CM and Vasconcelos MT (2003). Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. J. Agric. Food Chem. 51: 4788-4798. PMid:14705914   Angelova VR, Ivanov AS and Braikov DM (1999). Heavy metals (Pb, Cu, Zn and Cd) in the system soil - grapevine - grape. J. Sci. Food Agric. 79: 713-721.<713::AID-JSFA229>3.0.CO;2-F   Bagchi D, Bagchi M, Stohs SJ, Das DK, et al. (2000). Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148: 187-197.   Belinha I, Amorim MA, Rodrigues P, de Freitas V, et al. (2007). Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J. Agric. Food Chem. 55: 2446-2451. PMid:17323973   Dani C, Oliboni LS, Vanderlinde R, Bonatto D, et al. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically - or conventionally-produced grapes. Food Chem. Toxicol. 45: 2574-2580. PMid:17683842   Dani C, Pasquali MA, Oliveira MR, Umezu FM, et al. (2008a). Protective effects of purple grape juice on carbon tetrachloride-induced oxidative stress in brains of adult Wistar rats. J. Med. Food 11: 55-61. PMid:18361738   Dani C, Oliboni LS, Pasquali MA, Oliveira MR, et al. (2008b). Intake of purple grape juice as a hepatoprotective agent in Wistar rats. J. Med. Food 11: 127-132. PMid:18361748   Franke SI, Pra D, Giulian R, Dias JF, et al. (2006). Influence of orange juice in the levels and in the genotoxicity of iron and copper. Food Chem. Toxicol. 44: 425-435. PMid:16263202   Ghio AJ, Kennedy TP, Schapira RM, Crumbliss AL, et al. (1990). Hypothesis: is lung disease after silicate inhalation caused by oxidant generation? Lancet 336: 967-969.   Halliwell B and Gutteridge JMC (2007). Free Radicals in Biology and Medicine. 4th edn. Clarendon Press, Oxford.   Hartwig A (1995). Current aspects in metal genotoxicity. Biometals 8: 3-11. PMid:7865990   Jemai H, Messaoudi I, Chaouch A and Kerkeni A (2007). Protective effect of zinc supplementation on blood antioxidant defense system in rats exposed to cadmium. J. Trace Elem. Med. Biol. 21: 269-273. PMid:17980818   Johansson SAE, Campbell JL and Malmqvist KG (1995). Particle-Induced X-Ray Emission Spectrometry (PIXE). John Wiley & Sons, New York.   Linder MC (2001). Copper and genomic stability in mammals. Mutat. Res. 475: 141-152.   Mahan LK and Scott-Stumpf S (2004). Krause's Food, Nutrition and Diet Therapy. 11th edn. Elsevier Inc, New York.   Maxwell JA, Teesdale WJ and Campbell JL (1995). The Guelph PIXE software package II. Nucl. Instrum. Meth. Phys. Res. Sect. B. 95: 407-421.   Olalla M, Fernandez J, Cabrera C, Navarro M, et al. (2004). Nutritional study of copper and zinc in grapes and commercial grape juices from Spain. J. Agric. Food Chem. 52: 2715-2720. PMid:15113181   Onianwa PC, Adetola IG, Iwegbue CMA, Ojo MF, et al. (1999). Trace heavy metals composition of some Nigerian beverages and food drinks. Food Chem. 66: 275-279.   Parkin G (2004). Synthetic analogues relevant to the structure and function of zinc enzymes. Chem. Rev. 104: 699-767. PMid:14871139   Pinheiro ES, da Costa JMC, Clemente E, Machado PHS, et al. (2009). Physical chemical and mineral stability of grape juice obtained by steam extraction. Rev. Cienc. Agron. 40: 373-380.   Rojas E, Herrera LA, Poirier LA and Ostrosky-Wegman P (1999). Are metals dietary carcinogens? Mutat. Res. 443: 157-181.   Salvo F, La Pera L, Di Bella G, Nicotina M, et al. (2003). Influence of different mineral and Organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines. J. Agric. Food Chem. 51: 1090-1094. PMid:12568578   Santon A, Irato P, Medici V, D'Inca R, et al. (2003). Effect and possible role of Zn treatment in LEC rats, an animal model of Wilson's disease. Biochim. Biophys. Acta 1637: 91-97.   Schuller RC and von Borstel RC (1 974). Spontaneous mutability in yeast. I. Stability of lysine reversion rates to variation of adenine concentration. Mutat. Res. 24: 17-23.   Soares DG, Andreazza AC and Salvador M (2003). Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. J. Agric. Food Chem. 51: 1077-1080. PMid:12568575   USDA (US Department of Agriculture, Agricultural Research Service) (2009). USDA National Nutrient Database for Standard Reference, Release 22. Nutrient Data Laboratory Home Page. Available at []. Accessed October 2010.   Valko M, Rhodes CJ, Moncol J, Izakovic M, et al. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160: 1-40. PMid:16430879   Wilmsen PK, Spada DS and Salvador M (2005). Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem. 53: 4757-4761. PMid:15941311   Worley CG, Bombick D, Allen JW, Suber RL, et al. (2002). Effects of manganese on oxidative stress in CATH.a cells. Neurotoxicology 23: 159-164.   Zhu J, Koken MH, Quignon F, Chelbi-Alix MK, et al. (1997). Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 94: 3978-3983. PMid:9108090 PMCid:20553