Publications

Found 8 results
Filters: Author is Y.Z. Li  [Clear All Filters]
2013
S. Yan, Li, Y. Z., Zhu, X. W., Liu, C. L., Wang, P., and Liu, Y. L., HuGE systematic review and meta-analysis demonstrate association of CASP-3 and CASP-7 genetic polymorphisms with cancer risk, vol. 12, pp. 1561-1573, 2013.
Y. Z. Li, Wang, L. J., Li, X., Li, S. L., Wang, J. L., Wu, Z. H., Gong, L., and Zhang, X. D., Vascular endothelial growth factor gene polymorphisms contribute to the risk of endometriosis: an updated systematic review and meta-analysis of 14 case-control studies, vol. 12, pp. 1035-1044, 2013.
Altinkaya SO, Ugur M, Ceylaner G, Ozat M, et al. (2011). Vascular endothelial growth factor +405 C/G polymorphism is highly associated with an increased risk of endometriosis in Turkish women. Arch. Gynecol. Obstet. 283: 267-272. http://dx.doi.org/10.1007/s00404-009-1344-1 PMid:20041256   Attar R, Agachan B, Kuran SB, Toptas B, et al. (2010). Genetic variants of vascular endothelial growth factor and risk for the development of endometriosis. In Vivo 24: 297-301. PMid:20555002   Bhanoori M, Arvind BK, Pavankumar Reddy NG, Lakshmi RK, et al. (2005). The vascular endothelial growth factor (VEGF) +405G>C 5'-untranslated region polymorphism and increased risk of endometriosis in South Indian women: a case control study. Hum. Reprod. 20: 1844-1849. http://dx.doi.org/10.1093/humrep/deh852 PMid:15746194   Cosin R, Gilabert-Estelles J, Ramon LA, Espana F, et al. (2009). Vascular endothelial growth factor polymorphisms (-460C/T, +405G/C, and 936C/T) and endometriosis: their influence on vascular endothelial growth factor expression. Fertil. Steril. 92: 1214-1220. http://dx.doi.org/10.1016/j.fertnstert.2008.08.079 PMid:18930211   Ferrara N (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25: 581-611. http://dx.doi.org/10.1210/er.2003-0027 PMid:15294883   Ferrara N, Gerber HP and LeCouter J (2003). The biology of VEGF and its receptors. Nat. Med. 9: 669-676. http://dx.doi.org/10.1038/nm0603-669 PMid:12778165   Fukumura D, Xavier R, Sugiura T, Chen Y, et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715-725. http://dx.doi.org/10.1016/S0092-8674(00)81731-6   Gentilini D, Somigliana E, Vigano P, Vignali M, et al. (2008). The vascular endothelial growth factor +405G>C polymorphism in endometriosis. Hum. Reprod. 23: 211-215. http://dx.doi.org/10.1093/humrep/dem341 PMid:17977866   Girling JE and Rogers PA (2005). Recent advances in endometrial angiogenesis research. Angiogenesis 8: 89-99. http://dx.doi.org/10.1007/s10456-005-9006-9 PMid:16211359   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hsieh YY, Chang CC, Tsai FJ, Yeh LS, et al. (2004). T allele for VEGF gene-460 polymorphism at the 5'-untranslated region: association with a higher susceptibility to endometriosis. J. Reprod. Med. 49: 468-472. PMid:15283056   Ikuhashi Y, Yoshida S, Kennedy S, Zondervan K, et al. (2007). Vascular endothelial growth factor +936 C/T polymorphism is associated with an increased risk of endometriosis in a Japanese population. Acta Obstet. Gynecol. Scand. 86: 1352-1358. http://dx.doi.org/10.1080/00016340701644991 PMid:17963063   Kang S, Zhao J, Liu Q, Zhou R, et al. (2009). Vascular endothelial growth factor gene polymorphisms are associated with the risk of developing adenomyosis. Environ. Mol. Mutagen. 50: 361-366. http://dx.doi.org/10.1002/em.20455 PMid:19197986   Kim JG, Kim JY, Jee BC, Suh CS, et al. (2008). Association between endometriosis and polymorphisms in endostatin and vascular endothelial growth factor and their serum levels in Korean women. Fertil. Steril. 89: 243-245. http://dx.doi.org/10.1016/j.fertnstert.2007.02.023 PMid:17482599   Kim SH, Choi YM, Choung SH, Jun JK, et al. (2005). Vascular endothelial growth factor gene +405 C/G polymorphism is associated with susceptibility to advanced stage endometriosis. Hum. Reprod. 20: 2904-2908. http://dx.doi.org/10.1093/humrep/dei146 PMid:15979997   Lamp M, Saare M, Laisk T, Karro H, et al. (2010). Genetic variations in vascular endothelial growth factor but not in angiotensin I-converting enzyme genes are associated with endometriosis in Estonian women. Eur. J. Obstet. Gynecol. Reprod. Biol. 153: 85-89. http://dx.doi.org/10.1016/j.ejogrb.2010.07.021 PMid:20685027   Liu Q, Li Y, Zhao J, Sun DL, et al. (2009a). Association of polymorphisms -1154G/A and -2578C/A in the vascular endothelial growth factor gene with decreased risk of endometriosis in Chinese women. Hum. Reprod. 24: 2660-2666. http://dx.doi.org/10.1093/humrep/dep208 PMid:19531502   Liu Q, Li Y, Zhao J, Zhou RM, et al. (2009b). Association of single nucleotide polymorphisms in VEGF gene with the risk of endometriosis and adenomyosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 165-169. PMid:19350508   Matalliotakis IM, Katsikis IK and Panidis DK (2005). Adenomyosis: what is the impact on fertility? Curr. Opin. Obstet. Gynecol. 17: 261-264. http://dx.doi.org/10.1097/01.gco.0000169103.85128.c0 PMid:15870560   Missmer SA and Cramer DW (2003). The epidemiology of endometriosis. Obstet. Gynecol. Clin. North Am. 30: 1-19, vii. http://dx.doi.org/10.1016/S0889-8545(02)00050-5   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Signorile PG and Baldi A (2010). Endometriosis: new concepts in the pathogenesis. Int. J. Biochem. Cell Biol. 42: 778-780. http://dx.doi.org/10.1016/j.biocel.2010.03.008 PMid:20230903   Varma R, Rollason T, Gupta JK and Maher ER (2004). Endometriosis and the neoplastic process. Reproduction 127: 293-304. http://dx.doi.org/10.1530/rep.1.00020 PMid:15016949   Vigano P, Parazzini F, Somigliana E and Vercellini P (2004). Endometriosis: epidemiology and aetiological factors. Best. Pract. Res. Clin. Obstet. Gynaecol. 18: 177-200. http://dx.doi.org/10.1016/j.bpobgyn.2004.01.007 PMid:15157637   von Elm E, Altman DG, Egger M, Pocock SJ, et al. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370: 1453-1457. http://dx.doi.org/10.1016/S0140-6736(07)61602-X   Watson CJ, Webb NJ, Bottomley MJ and Brenchley PE (2000). Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12: 1232- 1235. http://dx.doi.org/10.1006/cyto.2000.0692 PMid:10930302   Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin. Exp. Rheumatol 29: 285-292. PMid:21418777   Zhao ZZ, Nyholt DR, Thomas S, Treloar SA, et al. (2008). Polymorphisms in the vascular endothelial growth factor gene and the risk of familial endometriosis. Mol. Hum. Reprod. 14: 531-538. http://dx.doi.org/10.1093/molehr/gan043 PMid:18650217   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
2012
Y. D. Sun, Liang, Y., Wu, J. M., Li, Y. Z., Cui, X., and Qin, L., Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross, vol. 11, pp. 3696-3710, 2012.
Arazuri S, Jarén C, Arana JI and Pérez de Ciriza JJ (2007). Influence of mechanical harvest on the physical properties of processing tomato (Lycopersicon esculentum Mill.). J. Food Eng. 80: 190-198. http://dx.doi.org/10.1016/j.jfoodeng.2006.05.008   Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, et al. (1998). Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor. Appl. Genet. 97: 381-397. http://dx.doi.org/10.1007/s001220050908   Cagas CC, Lee OL, Keisuke N and Nobuo S (2008). Quantitative trait loci controlling flowering time and related traits in a Solanum lycopersicum x S. pimpinellifolium cross. Sci. Hort. 116: 144-151. http://dx.doi.org/10.1016/j.scienta.2007.12.003   Causse M, Saliba-Colombani V, Lecomte L, Duffe P, et al. (2002). QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53: 2089-2098. http://dx.doi.org/10.1093/jxb/erf058 PMid:12324532   Causse M, Duffe P, Gomez MC, Buret M, et al. (2004). A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot. 55: 1671-1685. http://dx.doi.org/10.1093/jxb/erh207 PMid:15258170   Causse M, Chaib J, Lecomte L, Buret M, et al. (2007). Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor. Appl. Genet. 115: 429-442. http://dx.doi.org/10.1007/s00122-007-0578-1 PMid:17571252   Chaib J, Lecomte L, Buret M and Causse M (2006). Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor. Appl. Genet. 112: 934-944. http://dx.doi.org/10.1007/s00122-005-0197-7 PMid:16402187   Chen FQ, Foolad MR, Hyman J, Clair DASt, et al. (1999). Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum x L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol. Breed. 5: 283-299. http://dx.doi.org/10.1023/A:1009656910457   Doganlar S, Frary A, Ku HM and Tanksley SD (2002). Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45: 1189-1202. http://dx.doi.org/10.1139/g02-091 PMid:12502266   Eshed Y and Zamir D (1996). Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807-1817. PMid:8844166 PMCid:1207441   Foolad MR (2007). Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics 2007: 64358. http://dx.doi.org/10.1155/2007/64358 PMid:18364989 PMCid:2267253   Frary A, Fulton TM, Zamir D and Tanksley SD (2004). Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor. Appl. Genet. 108: 485-496. http://dx.doi.org/10.1007/s00122-003-1422-x PMid:14740082   Fulton TM, Chunwingse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. http://dx.doi.org/10.1007/BF02670897   Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, et al. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor. Appl. Genet. 95: 881-894. http://dx.doi.org/10.1007/s001220050639   Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, et al. (2000). Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross. Theor. Appl. Genet. 100: 1025-1042. http://dx.doi.org/10.1007/s001220051384   Grandillo S and Tanksley SD (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92: 935-951. http://dx.doi.org/10.1007/BF00224033   Grandillo S, Ku HM and Tanksley SD (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99: 978-987. http://dx.doi.org/10.1007/s001220051405   Gur A and Zamir D (2004). Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2: e245. http://dx.doi.org/10.1371/journal.pbio.0020245 PMid:15328532 PMCid:514488   Gur A, Semel Y, Osorio S, Friedmann M, et al. (2011). Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor. Appl. Genet. 122: 405-420. http://dx.doi.org/10.1007/s00122-010-1456-9 PMid:20872209 PMCid:3021191   Heather EY, Anne F, Sami D, Anna F, et al. (2004). Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135: 283-296. http://dx.doi.org/10.1023/B:EUPH.0000013314.04488.87   Kader AA (1986). Effects of postharvest handling procedures on tomato quality. Acta Hort. 190: 209-221.   Ku HM, Grandillo S and Tanksley SD (2000). fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor. Appl. Genet. 101: 873-878. http://dx.doi.org/10.1007/s001220051555   Kuan-Hung L, Wei-Lung Y, Huei-Mei C and Hsiao-Feng L (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 174: 119-135. http://dx.doi.org/10.1007/s10681-010-0147-6   Lavecchia R and Zuorro A (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228: 153-158. http://dx.doi.org/10.1007/s00217-008-0897-8   Lecomte L, Duffe P, Buret M, Servin B, et al. (2004). Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor. Appl. Genet. 109: 658-668. http://dx.doi.org/10.1007/s00122-004-1674-0 PMid:15112037   Ma F and Cheng L (2003). The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shaded peel. Plant Sci. 165: 819-827. http://dx.doi.org/10.1016/S0168-9452(03)00277-2   Riadh I, Chafik H, Marcello SL, Imen T, et al. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compost. Anal. 24: 588-595. http://dx.doi.org/10.1016/j.jfca.2010.11.003   Roberto L and Antonio Z (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228: 153-158. http://dx.doi.org/10.1007/s00217-008-0897-8   Rousseaux MC, Jones CM, Adams D, Chetelat R, et al. (2005). QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor. Appl. Genet. 111: 1396-1408. http://dx.doi.org/10.1007/s00122-005-0071-7 PMid:16177901   Saliba-Colombani V, Causse M, Langlois D, Philouze J, et al. (2001). Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor. Appl. Genet. 102: 259-272. http://dx.doi.org/10.1007/s001220051643   Semel Y, Nissenbaum J, Menda N, Zinder M, et al. (2006). Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl. Acad. Sci. U. S. A. 103: 12981-12986. http://dx.doi.org/10.1073/pnas.0604635103 PMid:16938842 PMCid:1552043   Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, et al. (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor. Appl. Genet. 121: 731-739. http://dx.doi.org/10.1007/s00122-010-1344-3 PMid:20431859 PMCid:2909429   Sonah H, Deshmukh RK, Singh VP, Gupta DK, et al. (2011). Genomic resources in horticultural crops: status, utility and challenges. Biotechnol. Adv. 29: 199-209. http://dx.doi.org/10.1016/j.biotechadv.2010.11.002 PMid:21094247   Tanksley SD, Grandillo S, Fulton TM, Zamir D, et al. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224. http://dx.doi.org/10.1007/BF00223378   Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, et al. (2000). Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. U. S. A. 97: 11192-11197. http://dx.doi.org/10.1073/pnas.97.21.11192 PMid:11027328 PMCid:17176   Wu M and Kubota C (2008). Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hort. 116: 122-129. http://dx.doi.org/10.1016/j.scienta.2007.11.014   Yong-Sheng L, Amit G, Ronen G, Causse M, et al. (2003). There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1: 195-207. http://dx.doi.org/10.1046/j.1467-7652.2003.00018.x PMid:17156032
S. Yan, Li, Y. Z., Zhu, J. W., Liu, C. L., Wang, P., and Liu, Y. L., Role of CASP-10 gene polymorphisms in cancer susceptibility: a HuGE review and meta-analysis, vol. 11, pp. 3998-4007, 2012.
Alison MR and Sarraf CE (1992). Apoptosis: a gene-directed programme of cell death. J. R. Coll. Physicians Lond. 26: 25-35. PMid:1315390   Boatright KM and Salvesen GS (2003). Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15: 725-731. http://dx.doi.org/10.1016/j.ceb.2003.10.009 PMid:14644197   Doonan F and Cotter TG (2008). Morphological assessment of apoptosis. Methods 44: 200-204. http://dx.doi.org/10.1016/j.ymeth.2007.11.006 PMid:18314050   Frank B, Hemminki K, Wappenschmidt B, Meindl A, et al. (2006). Association of the CASP10 V410I variant with reduced familial breast cancer risk and interaction with the CASP8 D302H variant. Carcinogenesis 27: 606-609. http://dx.doi.org/10.1093/carcin/bgi248 PMid:16251207   Gaudet MM, Milne RL, Cox A, Camp NJ, et al. (2009). Five polymorphisms and breast cancer risk: results from the Breast Cancer Association Consortium. Cancer Epidemiol. Biomarkers Prev. 18: 1610-1616. http://dx.doi.org/10.1158/1055-9965.EPI-08-0745 PMid:19423537 PMCid:2737177   Ghavami S, Hashemi M, Ande SR, Yeganeh B, et al. (2009). Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 46: 497-510. http://dx.doi.org/10.1136/jmg.2009.066944 PMid:19505876   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hosgood HD, III, Baris D, Zhang Y, Zhu Y, et al. (2008). Caspase polymorphisms and genetic susceptibility to multiple myeloma. Hematol. Oncol. 26: 148-151. http://dx.doi.org/10.1002/hon.852 PMid:18381704 PMCid:2586415   Kim MS, Oh JE, Min CK, Lee S, et al. (2009). Mutational analysis of CASP10 gene in acute leukaemias and multiple myelomas. Pathology 41: 484-487. http://dx.doi.org/10.1080/00313020903041143 PMid:19900088   Kumar S (2004). Measurement of caspase activity in cells undergoing apoptosis. Methods Mol. Biol. 282: 19-30. PMid:15105554   Lan Q, Zheng T, Chanock S, Zhang Y, et al. (2007). Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis 28: 823-827. http://dx.doi.org/10.1093/carcin/bgl196 PMid:17071630   Li C, Zhao H, Hu Z, Liu Z, et al. (2008). Genetic variants and haplotypes of the caspase-8 and caspase-10 genes contribute to susceptibility to cutaneous melanoma. Hum. Mutat. 29: 1443-1451. http://dx.doi.org/10.1002/humu.20803 PMid:18563783 PMCid:2937220   MacPherson G, Healey CS, Teare MD, Balasubramanian SP, et al. (2004). Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J. Natl. Cancer Inst. 96: 1866-1869. http://dx.doi.org/10.1093/jnci/dji001 PMid:15601643   Nicholson DW (1996). ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat. Biotechnol. 14: 297-301. http://dx.doi.org/10.1038/nbt0396-297 PMid:9630889   Nicholson DW and Thornberry NA (1997). Caspases: killer proteases. Trends Biochem. Sci. 22: 299-306. http://dx.doi.org/10.1016/S0968-0004(97)01085-2   Niles AL, Moravec RA and Riss TL (2008). Caspase activity assays. Methods Mol. Biol. 414: 137-150. PMid:18175817   Oh JE, Kim MS, Ahn CH, Kim SS, et al. (2010). Mutational analysis of CASP10 gene in colon, breast, lung and hepatocellular carcinomas. Pathology 42: 73-76. http://dx.doi.org/10.3109/00313020903434371 PMid:20025484   Park WS, Lee JH, Shin MS, Park JY, et al. (2002). Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21: 2919-2925. http://dx.doi.org/10.1038/sj.onc.1205394 PMid:11973654   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Rupinder SK, Gurpreet AK and Manjeet S (2007). Cell suicide and caspases. Vascul. Pharmacol. 46: 383-393. http://dx.doi.org/10.1016/j.vph.2007.01.006 PMid:17382599   Shin MS, Kim HS, Kang CS, Park WS, et al. (2002). Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99: 4094-4099. http://dx.doi.org/10.1182/blood.V99.11.4094 PMid:12010812   Ulybina YM, Kuligina ES, Mitiushkina NV, Rozanov ME, et al. (2009). Coding polymorphisms in Casp5, Casp8 and DR4 genes may play a role in predisposition to lung cancer. Cancer Lett. 278: 183-191. http://dx.doi.org/10.1016/j.canlet.2009.01.012 PMid:19203830   von Elm E, Altman DG, Egger M, Pocock SJ, et al. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology 18: 800-804. http://dx.doi.org/10.1097/EDE.0b013e3181577654 PMid:18049194   Wang J, Chun HJ, Wong W, Spencer DM, et al. (2001). Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. U. S. A. 98: 13884-13888. http://dx.doi.org/10.1073/pnas.241358198 PMid:11717445 PMCid:61136   Ye YF (2004). Polymorphisms of Caspase-8, -10 Genes and Their Relationship with Pathogenesis of Non-Hodgkin lymphoma. Master's thesis, Zhejiang University School of Medicine, Zhejiang.   Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin. Exp. Rheumatol. 29: 285-292. PMid:21418777   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093