Publications

Found 4 results
Filters: Author is W.L. Guo  [Clear All Filters]
2012
X. H. Shan, Li, Y. D., Liu, X. M., Wu, Y., Zhang, M. Z., Guo, W. L., Liu, B., and Yuan, Y. P., Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP, vol. 11, pp. 2749-2759, 2012.
Ashikawa I (2001). Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol. Biol. 45: 31-39. http://dx.doi.org/10.1023/A:1006457321781 PMid:11247604   Cervera MT, Ruiz-Garcia L and Martinez-Zapater JM (2002). Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol. Genet. Genomics 268: 543-552. http://dx.doi.org/10.1007/s00438-002-0772-4 PMid:12471452   Choi CS and Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genomics 277: 589-600. http://dx.doi.org/10.1007/s00438-007-0209-1 PMid:17273870   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Herrera CM and Bazaga P (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187: 867-876. http://dx.doi.org/10.1111/j.1469-8137.2010.03298.x PMid:20497347   Kalisz S and Purugganan MD (2004). Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol. Evol. 19: 309-314. http://dx.doi.org/10.1016/j.tree.2004.03.034 PMid:16701276   Keyte AL, Percifield R, Liu B and Wendel JF (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J. Hered. 97: 444-450. http://dx.doi.org/10.1093/jhered/esl023 PMid:16987937   Li YD, Chu ZZ, Liu XG, Jing HC, et al. (2010). A cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. J. Integr. Plant Biol. 52: 1036-1042. http://dx.doi.org/10.1111/j.1744-7909.2010.01001.x PMid:21106003   Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, et al. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5: e10326. http://dx.doi.org/10.1371/journal.pone.0010326 PMid:20436669 PMCid:2859934   Lukens LN and Zhan S (2007). The plant genome's methylation status and response to stress: implications for plant improvement. Curr. Opin. Plant Biol. 10: 317-322. http://dx.doi.org/10.1016/j.pbi.2007.04.012 PMid:17468039   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Miller MP (1997). Tools for Population Genetic Analyses (TFPGA) v. 1.3: A Windows Program for the Analysis of Allozyme and Molecular Genetic Data. Department of Biological Sciences, Northern Arizona University, Phoenix.   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Papa R and Gepts P (2003). Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor. Appl. Genet. 106: 239-250. PMid:12582849   Rapp RA and Wendel JF (2005). Epigenetics and plant evolution. New Phytol. 168: 81-91. http://dx.doi.org/10.1111/j.1469-8137.2005.01491.x PMid:16159323   Richards EJ (2011). Natural epigenetic variation in plant species: a view from the field. Curr. Opin. Plant Biol. 14: 204-209. http://dx.doi.org/10.1016/j.pbi.2011.03.009 PMid:21478048   Salmon A, Ainouche ML and Wendel JF (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 14: 1163-1175. http://dx.doi.org/10.1111/j.1365-294X.2005.02488.x PMid:15773943   Schneider S, Schneider S and Excoffier L (2000). Arlequin Version 2000, A Software for Population Genetics Data Analysis. University of Geneva, Geneva.   Shen S, Wang Z, Shan X, Wang H, et al. (2006). Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure. Sci. China C. Life Sci. 49: 97-104. http://dx.doi.org/10.1007/s11427-006-0097-3 PMid:16704112   Tan MP (2010). Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol. Biochem. 48: 21-26. http://dx.doi.org/10.1016/j.plaphy.2009.10.005 PMid:19889550   Tang S and Knapp SJ (2003). Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor. Appl. Genet. 106: 990-1003. PMid:12671746   Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174. http://dx.doi.org/10.1371/journal.pbio.0050174 PMid:17579518 PMCid:1892575   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Waugh R, McLean K, Flavell AJ, Pearce SR, et al. (1997). Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253: 687-694. http://dx.doi.org/10.1007/s004380050372 PMid:9079879   Wright SI, Bi IV, Schroeder SG, Yamasaki M, et al. (2005). The effects of artificial selection on the maize genome. Science 308: 1310-1314. http://dx.doi.org/10.1126/science.1107891 PMid:15919994   Yeh FC, Yang RC, Boyle TBJ and Ye ZH (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Version 1.21. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.   Yi C, Zhang S, Liu X and Bui HT (2010). Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol. 10: 259. http://dx.doi.org/10.1186/1471-2229-10-259 PMid:21092236 PMCid:3017842
W. L. Guo, Chen, R. G., Gong, Z. H., Yin, Y. X., Ahmed, S. S., and He, Y. M., Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress, vol. 11, pp. 4063-4080, 2012.
Aebi H (1984). Catalase in vitro. Methods Enzymol. 105: 121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3   Arrigoni O, Dipierro S and Borraccino G (1981). Ascorbate free radical reductase; a key enzyme of the ascorbic acid system. FEBS Lett. 125: 242-244. http://dx.doi.org/10.1016/0014-5793(81)80729-6   Bellaire BA, Carmody J, Braud J, Gossett DR, et al. (2000). Involvement of abscisic acid-dependent and -independent pathways in the upregulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic. Res. 33: 531-545. http://dx.doi.org/10.1080/10715760000301071 PMid:11200086   Bueno P, Piqueras A, Kurepa J, Savouré A, et al. (1998). Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 138: 27-34. http://dx.doi.org/10.1016/S0168-9452(98)00154-X   de Azevedo Neto AD, Prisco JT, Eneas-Filho J, Medeiros JV, et al. (2005). Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162: 1114-1122. http://dx.doi.org/10.1016/j.jplph.2005.01.007 PMid:16255169   Dhindsa RS, Plumb-Dhindsa P and Thorpe TA (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93-101. http://dx.doi.org/10.1093/jxb/32.1.93   Ding W, Song L, Wang X and Bi Y (2010). Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol. Plantarum 54: 607-613. http://dx.doi.org/10.1007/s10535-010-0110-3   Ghassemian M, Lutes J, Chang HS, Lange I, et al. (2008). Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana. Phytochemistry 69: 2899-2911. http://dx.doi.org/10.1016/j.phytochem.2008.09.020 PMid:19007950   Giannopolitis CN and Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59: 309-314. http://dx.doi.org/10.1104/pp.59.2.309 PMid:16659839 PMCid:542387   Griffith OW (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207-212. http://dx.doi.org/10.1016/0003-2697(80)90139-6   Hammerschmidt R, Nuckles EM and Kuc J (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20: 73-82. http://dx.doi.org/10.1016/0048-4059(82)90025-X   Hodges DM, Lester GE, Munro KD and Toivonen PM (2004). Oxidative stress: importance for postharvest quality. HortScience 39: 924-929.   Hung KT and Kao CH (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J. Plant Physiol. 160: 871-879. http://dx.doi.org/10.1078/0176-1617-01118 PMid:12964863   Hung KT and Kao CH (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J. Plant Physiol. 161: 1347-1357. http://dx.doi.org/10.1016/j.jplph.2004.05.011 PMid:15658805   Jiang M and Zhang J (2002). Role of abscissic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic. Res. 36: 1001-1015. http://dx.doi.org/10.1080/1071576021000006563 PMid:12448826   Korkmaz A, Korkmaz Y and Demirkiran AR (2010). Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 67: 495-501. http://dx.doi.org/10.1016/j.envexpbot.2009.07.009   Le Martret B, Poage M, Shiel K, Nugent GD, et al. (2011). Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 9: 661-673. http://dx.doi.org/10.1111/j.1467-7652.2011.00611.x PMid:21450042   Lee DH and Lee CB (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159: 75-85. http://dx.doi.org/10.1016/S0168-9452(00)00326-5   Li Q, Yu B, Gao Y, Dai AH, et al. (2011). Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. J. Plant Physiol. 168: 927-934. http://dx.doi.org/10.1016/j.jplph.2010.11.025 PMid:21353326   Li W, Qi L, Lin X, Chen H, et al. (2009). The expression of manganese superoxide dismutase gene from Nelumbo nucifera responds strongly to chilling and oxidative stresses. J. Integr. Plant Biol. 51: 279-286. http://dx.doi.org/10.1111/j.1744-7909.2008.00790.x PMid:19261071   Li Y, Liu Y and Zhang JG (2010). Advances in the research on the AsA-GSH cycle in horticultural crops. Front. Agric. China 4: 84-90. http://dx.doi.org/10.1007/s11703-009-0089-8   Liu ZJ, Guo YK and Bai JG (2010). Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. J. Plant Growth Regul. 29: 171-183. http://dx.doi.org/10.1007/s00344-009-9121-8   Logan BA, Grace SC, Adams WW and Demmig-Adams B (1998). Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116: 9-17. http://dx.doi.org/10.1007/PL00013823   Ma XW, Ma FW, Mi YF, Ma YH, et al. (2008). Morphological and physiological responses of two contrasting malus species to exogenous abscisic acid application. Plant Growth Regul. 56: 77-87. http://dx.doi.org/10.1007/s10725-008-9287-2   Mukherjee SP and Choudhuri MA (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol. Plant. 58: 166-170. http://dx.doi.org/10.1111/j.1399-3054.1983.tb04162.x   Nakano Y and Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.   Nayyar H, Bains TS and Kumar S (2005). Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ. Exp. Bot. 54: 275-285. http://dx.doi.org/10.1016/j.envexpbot.2004.09.007   Schaedle M (1977). Chloroplast glutathione reductase. Plant Physiol. 59: 1011-1012. http://dx.doi.org/10.1104/pp.59.5.1011 PMid:16659940 PMCid:543356   Selote DS and Khanna-Chopra R (2006). Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol. Plant. 127: 494-506. http://dx.doi.org/10.1111/j.1399-3054.2006.00678.x   Shan C and Liang Z (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 178: 130-139. http://dx.doi.org/10.1016/j.plantsci.2009.11.002   Stevens R, Page D, Gouble B, Garchery C, et al. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ. 31: 1086-1096. http://dx.doi.org/10.1111/j.1365-3040.2008.01824.x PMid:18433441   Verslues PE and Zhu JK (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans. 33: 375-379. http://dx.doi.org/10.1042/BST0330375 PMid:15787610   Wan H, Yuan W, Ruan M, Ye Q, et al. (2011). Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem. Biophys. Res. Commun. 416: 24-30. http://dx.doi.org/10.1016/j.bbrc.2011.10.105 PMid:22086175   Wang YL, Ma FW, Li MJ, Liang D, et al. (2011). Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul. 64: 63-74. http://dx.doi.org/10.1007/s10725-010-9537-y   Wang Z, Xiao Y, Chen W, Tang K, et al. (2010). Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J. Integr. Plant Biol. 52: 400-409. http://dx.doi.org/10.1111/j.1744-7909.2010.00921.x PMid:20377702   Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, et al. (2010). Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30: 222-230. http://dx.doi.org/10.3109/07388551.2010.487186 PMid:20572794   Zhang W, Jiang B, Li W, Song H, et al. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci. Hortic. 122: 200-208. http://dx.doi.org/10.1016/j.scienta.2009.05.013   Zhang Y, Tang HR, Luo Y and Hou YX (2009). Responses of antioxidant enzymes and compounds in strawberry (Fragaria x ananassa 'Toyonaka') to cold stress. New Zeal J. Crop Hort. 37: 383-390. http://dx.doi.org/10.1080/01140671.2009.9687594   Zhou BY, Guo ZF and Liu ZL (2005). Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Sci. 45: 599-605. http://dx.doi.org/10.2135/cropsci2005.0599