Publications

Found 8 results
Filters: Author is F.X. Shi  [Clear All Filters]
2012
X. M. Song, Jiang, J. F., Zhang, G. Z., Shi, F. X., and Jiang, Y. Q., DNA polymorphisms of the Hu sheep melanocortin-4 receptor (MC4R) gene associated with birth weight and 45d-weaning weight, vol. 11, pp. 4432-4441, 2012.
Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265. http://dx.doi.org/10.1093/bioinformatics/bth457 PMid:15297300   Borrmann L, Wilkening S and Bullerdiek J (2001). The expression of HMGA genes is regulated by their 3ꞌUTR. Oncogene 20: 4537-4541. http://dx.doi.org/10.1038/sj.onc.1204577 PMid:11494149   Bruun CS, Jorgensen CB, Nielsen VH, Andersson L, et al. (2006). Evaluation of the porcine melanocortin 4 receptor (MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Anim. Genet. 37: 359-362. http://dx.doi.org/10.1111/j.1365-2052.2006.01488.x PMid:16879346   Cerda-Reverter JM, Ling MK, Schioth HB and Peter RE (2003a). Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J. Neurochem. 87: 1354-1367. http://dx.doi.org/10.1046/j.1471-4159.2003.02107.x PMid:14713292   Cerda-Reverter JM, Ringholm A, Schioth HB and Peter RE (2003b). Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. Endocrinology 144: 2336-2349. http://dx.doi.org/10.1210/en.2002-0213 PMid:12746294   Chen R (1984). The Production of Hu Sheep (Chinese). 1st edn. Shanghai Science and Technology Publisher, Shanghai.   Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. 4th edn. Longman Scientific and Technical, New York. PMCid:1061158   Farooqi IS, Yeo GS, Keogh JM, Aminian S, et al. (2000). Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106: 271-279. http://dx.doi.org/10.1172/JCI9397 PMid:10903343 PMCid:314308   Gabriel SB, Schaffner SF, Nguyen H, Moore JM, et al. (2002). The structure of haplotype blocks in the human genome. Science 296: 2225-2229. http://dx.doi.org/10.1126/science.1069424 PMid:12029063   Govaerts C, Srinivasan S, Shapiro A, Zhang S, et al. (2005). Obesity-associated mutations in the melanocortin 4 receptor provide novel insights into its function. Peptides 26: 1909-1919. http://dx.doi.org/10.1016/j.peptides.2004.11.042 PMid:16083993   Grillo G, Turi A, Licciulli F, Mignone F, et al. (2010). UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 38: D75-D80. http://dx.doi.org/10.1093/nar/gkp902 PMid:19880380 PMCid:2808995   Haegeman A, Coopman F, Jacobs K, Mattheeuws M, et al. (2001). Bovine melanocortin receptor 4: cDNA sequence, polymorphisms and mapping. Anim. Genet. 32: 189-192. http://dx.doi.org/10.1046/j.1365-2052.2001.00750.x PMid:11531696   Hernandez-Sanchez J, Visscher P, Plastow G and Haley C (2003). Candidate gene analysis for quantitative traits using the transmission disequilibrium test: the example of the melanocortin 4-receptor in pigs. Genetics 164: 637-644. PMid:12807784 PMCid:1462588   Huang M, Gao X, Li JY, Ren HY, et al. (2010). Polymorphisms in MC4R gene and correlations with economic traits in cattle. Mol. Biol. Rep. 37: 3941-3944. http://dx.doi.org/10.1007/s11033-010-0051-0 PMid:20563647   Jokubka R, Maak S, Kerziene S and Swalve HH (2006). Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. J. Anim. Breed. Genet. 123: 17-22. http://dx.doi.org/10.1111/j.1439-0388.2006.00559.x PMid:16420261   Kamiyama M, Kobayashi M, Araki S, Iida A, et al. (2007). Polymorphisms in the 3' UTR in the neurocalcin delta gene affect mRNA stability, and confer susceptibility to diabetic nephropathy. Hum. Genet. 122: 397-407. http://dx.doi.org/10.1007/s00439-007-0414-3 PMid:17671797   Kim KS, Larsen N, Short T, Plastow G, et al. (2000). A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome 11: 131-135. http://dx.doi.org/10.1007/s003350010025 PMid:10656927   Kim KS, Reecy JM, Hsu WH, Anderson LL, et al. (2004). Functional and phylogenetic analyses of a melanocortin-4 receptor mutation in domestic pigs. Domest. Anim. Endocrinol. 26: 75-86. http://dx.doi.org/10.1016/j.domaniend.2003.12.001 PMid:14732454   Kindler S, Wang H, Richter D and Tiedge H (2005). RNA transport and local control of translation. Annu. Rev. Cell Dev. Biol. 21: 223-245. http://dx.doi.org/10.1146/annurev.cellbio.21.122303.120653 PMid:16212494 PMCid:1850961   Kohler A and Hurt E (2007). Exporting RNA from the nucleus to the cytoplasm. Nat. Rev Mol. Cell Biol. 8: 761-773. http://dx.doi.org/10.1038/nrm2255 PMid:17786152   Krawczak M, Nikolaus S, von Eberstein H, Croucher PJ, et al. (2006). PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet. 9: 55-61. http://dx.doi.org/10.1159/000090694 PMid:16490960   Liu H, Tian W, Zan L, Wang H, et al. (2010). Mutations of MC4R gene and its association with economic traits in Qinchuan cattle. Mol. Biol. Rep. 37: 535-540. http://dx.doi.org/10.1007/s11033-009-9706-0 PMid:19714485   Lubrano-Berthelier C, Cavazos M, Dubern B, Shapiro A, et al. (2003a). Molecular genetics of human obesity-associated MC4R mutations. Ann. N. Y. Acad. Sci. 994: 49-57. http://dx.doi.org/10.1111/j.1749-6632.2003.tb03161.x PMid:12851297   Lubrano-Berthelier C, Cavazos M, Le Stunff C, Haas K, et al. (2003b). The human MC4R promoter: characterization and role in obesity. Diabetes 52: 2996-3000. http://dx.doi.org/10.2337/diabetes.52.12.2996 PMid:14633862   MacKenzie RG (2006). Obesity-associated mutations in the human melanocortin-4 receptor gene. Peptides 27: 395-403. http://dx.doi.org/10.1016/j.peptides.2005.03.064 PMid:16274851   Narsai R, Howell KA, Millar AH, O'Toole N, et al. (2007). Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19: 3418-3436. http://dx.doi.org/10.1105/tpc.107.055046 PMid:18024567 PMCid:2174890   Pan X, Lu BG and Kong PL (1987). Jiangsu Livestock and Poultry Breeds (Chinese). Jiangsu Scientific and Technical Publishers, Nanjing.   Piccone ME, Pauszek S, Pacheco J, Rieder E, et al. (2009). Molecular characterization of a foot-and-mouth disease virus containing a 57-nucleotide insertion in the 3'untranslated region. Arch. Virol. 154: 671-676. http://dx.doi.org/10.1007/s00705-009-0332-x PMid:19288053   Ringholm A, Klovins J, Fredriksson R, Poliakova N, et al. (2003). Presence of melanocortin (MC4) receptor in spiny dogfish suggests an ancient vertebrate origin of central melanocortin system. Eur. J. Biochem. 270: 213-221. http://dx.doi.org/10.1046/j.1432-1033.2003.03371.x PMid:12605672   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Skorczyk A, Stachowiak M, Szczerbal I, Klukowska-Roetzler J, et al. (2007). Polymorphism and chromosomal location of the MC4R (melanocortin-4 receptor) gene in the dog and red fox. Gene 392: 247-252. http://dx.doi.org/10.1016/j.gene.2006.12.027 PMid:17306938   Skorczyk A, Flisikowski K and Switonski M (2012). A comparative analysis of MC4R gene sequence, polymorphism, and chromosomal localization in Chinese raccoon dog and Arctic fox. DNA Cell Biol. 31: 732-738. http://dx.doi.org/10.1089/dna.2011.1423 PMid:22047079   Stinckens A, Luyten T, Van den Maagdenberg K, Janssens S, et al. (2009). Interactions between genes involved in growth and muscularity in pigs: IGF-2, myostatin, ryanodine receptor 1, and melanocortin-4 receptor. Domest. Anim. Endocrinol. 37: 227-235. http://dx.doi.org/10.1016/j.domaniend.2009.06.002 PMid:19674865   Thomsen S, Anders S, Janga SC, Huber W, et al. (2010). Genome-wide analysis of mRNA decay patterns during early Drosophila development. Genome Biol. 11: R93. http://dx.doi.org/10.1186/gb-2010-11-9-r93 PMid:20858238 PMCid:2965385   Zhang CL, Wang YH, Chen H, Lan XY, et al. (2009). Association between variants in the 5ꞌ-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle. Mol. Biol. Rep. 36: 1839-1843. http://dx.doi.org/10.1007/s11033-008-9388-z PMid:18987992
P. Huang, Zhou, Z. R., Zheng, M. Q., and Shi, F. X., Effect of the IGF-1/PTEN/Akt/FoxO signaling pathway in the duodenal mucosa of rats subjected to water immersion and restraint stress, vol. 11, pp. 4775-4788, 2012.
Adachi M, Horiuchi G, Ikematsu N, Tanaka T, et al. (2011). Intragastrically administered lysophosphatidic acids protect against gastric ulcer in rats under water-immersion restraint stress. Dig. Dis. Sci. 56: 2252-2261. http://dx.doi.org/10.1007/s10620-011-1595-0 PMid:21298479   Al Haj Ali M, Mensah-Brown E, Chandranath SI, Adeghate E, et al. (2003). Distribution of insulin like growth factor-1 (IGF- 1) and its receptor in the intestines of the one-humped camel (Camelus dromedarius). Growth Factors 21: 131-137. http://dx.doi.org/10.1080/08977190310001637233 PMid:14708941   Bogdarin I, Potekhin PP, Kozlov DV and Shirokova NI (2005). Efficacy of the new collection of herbs at stressful experimental sharp ulcer defects of the gastroduodenal zone. Eksp. Klin. Gastroenterol. 74-8, 102.   Burgering BM and Kops GJ (2002). Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27: 352-360. http://dx.doi.org/10.1016/S0968-0004(02)02113-8   Carnero A, Blanco-Aparicio C, Renner O, Link W, et al. (2008). The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets. 8: 187-198. http://dx.doi.org/10.2174/156800908784293659 PMid:18473732   Carroll PV (2001). Treatment with growth hormone and insulin-like growth factor-I in critical illness. Best. Pract. Res. Clin. Endocrinol. Metab. 15: 435-451. http://dx.doi.org/10.1053/beem.2001.0162 PMid:11800516   Ceranowicz P, Warzecha Z, Dembinski A, Sendur R, et al. (2009). Treatment with ghrelin accelerates the healing of acetic acid-induced gastric and duodenal ulcers in rats. J. Physiol. Pharmacol. 60: 87-98. PMid:19439811   Coeffier M, Claeyssens S, Bensifi M, Lecleire S, et al. (2011). Influence of leucine on protein metabolism, phosphokinase expression, and cell proliferation in human duodenum1,3. Am. J. Clin. Nutr. 93: 1255-1262. http://dx.doi.org/10.3945/ajcn.111.013649 PMid:21508089   Coerper S, Wolf S, von KS, Thomas S, et al. (2001). Insulin-like growth factor I accelerates gastric ulcer healing by stimulating cell proliferation and by inhibiting gastric acid secretion. Scand. J. Gastroenterol. 36: 921-927. http://dx.doi.org/10.1080/003655201750305422 PMid:11521981   Cool JC, Dyer JL, Xian CJ, Butler RN, et al. (2005). Pre-treatment with insulin-like growth factor-I partially ameliorates 5-fluorouracil-induced intestinal mucositis in rats. Growth Horm. IGF Res. 15: 72-82. http://dx.doi.org/10.1016/j.ghir.2004.12.002 PMid:15701575   Creagh EM, Conroy H and Martin SJ (2003). Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193: 10-21. http://dx.doi.org/10.1034/j.1600-065X.2003.00048.x PMid:12752666   Cully M, You H, Levine AJ and Mak TW (2006). Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 6: 184-192. http://dx.doi.org/10.1038/nrc1819 PMid:16453012   Ding W, Wang W, Zhou B, Zhang W, et al. (2010). Formation of primordial follicles and immunolocalization of PTEN, PKB and FOXO3A proteins in the ovaries of fetal and neonatal pigs. J. Reprod. Dev. 56: 162-168. http://dx.doi.org/10.1262/jrd.09-094H PMid:19996554   Fresno Vara JA, Casado E, de Castro J, Cejas P, et al. (2004). PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30: 193-204. http://dx.doi.org/10.1016/j.ctrv.2003.07.007 PMid:15023437   Georgiev IP, Georgieva TM, PfafflM, Hammon HM, et al. (2003). Insulin-like growth factor and insulin receptors in intestinal mucosa of neonatal calves. J. Endocrinol. 176: 121-132. http://dx.doi.org/10.1677/joe.0.1760121 PMid:12525256   Harada N, Okajima K, Kurihara H and Nakagata N (2007). Stimulation of sensory neurons by capsaicin increases tissue levels of IGF-I, thereby reducing reperfusion-induced apoptosis in mice. Neuropharmacology 52: 1303-1311. http://dx.doi.org/10.1016/j.neuropharm.2007.01.016 PMid:17360009   Huang P, Zhou ZQ, Huang RH, Zhou B, et al. (2011). Age-dependent expression of forkhead box O proteins in the duodenum of rats. J. Zhejiang. Univ. Sci. B 12: 730-735. http://dx.doi.org/10.1631/jzus.B1000298 PMid:21887848 PMCid:3167906   Huang P, Zhou ZR, Wang H, Wei QW, et al. (2012). Effect of the IGF-1/PTEN/Akt/FoxO signaling pathway on the development and healing of water immersion and restraint stress-induced gastric ulcers in rats. Int. J. Mol. Med. 30: 650-658. PMid:22735908   Karcher DM, Fleming-Waddell JN and Applegate TJ (2009). Developmental changes in insulin-like growth factor (IGF)-I and -II mRNA abundance in extra-embryonic membranes and small intestine of avian embryos. Growth Horm. IGF Res. 19: 31-42. http://dx.doi.org/10.1016/j.ghir.2008.05.003 PMid:18632292   Kelly KJ, Sandoval RM, Dunn KW, Molitoris BA, et al. (2003). A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am. J. Physiol. Cell Physiol. 284: C1309-C1318. PMid:12676658   Konturek PC, Brzozowski T, Duda A, Kwiecien S, et al. (2001). Epidermal growth factor and prostaglandin E(2) accelerate mucosal recovery from stress-induced gastric lesions via inhibition of apoptosis. J. Physiol. Paris 95: 361-367. http://dx.doi.org/10.1016/S0928-4257(01)00049-3   Leslie NR and Downes CP (2004). PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382: 1-11. http://dx.doi.org/10.1042/BJ20040825 PMid:15193142 PMCid:1133909   Liu X, Guo WJ, Zhang XW, Cai X, et al. (2011). Cetuximab enhances the activities of irinotecan on gastric cancer cell lines through downregulating the EGFR pathway upregulated by irinotecan. Cancer Chemother. Pharmacol. 68: 871-878. http://dx.doi.org/10.1007/s00280-011-1559-2 PMid:21286718   Liu Y, Wang Y, Shan T, Guo J, et al. (2008). The tissue-specific and developmental expression patterns of the forkhead transcription factor FoxO1 gene in pigs. J. Anim. Feed Sci. 17: 182-190.   Mullen MP, Lynch CO, Waters SM, Howard DJ, et al. (2011). Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res. 10: 1819-1830. http://dx.doi.org/10.4238/vol10-3gmr1173 PMid:21948746   Nakae J, Biggs WH, III, Kitamura T, Cavenee WK, et al. (2002). Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet. 32: 245-253. http://dx.doi.org/10.1038/ng890 PMid:12219087   Nguyen T, Chai J, Li A, Akahoshi T, et al. (2007). Novel roles of local insulin-like growth factor-1 activation in gastric ulcer healing: promotes actin polymerization, cell proliferation, re-epithelialization, and induces cyclooxygenase-2 in a phosphatidylinositol 3-kinase-dependent manner. Am. J. Pathol. 170: 1219-1228. http://dx.doi.org/10.2353/ajpath.2007.060745 PMid:17392162 PMCid:1829456   Reddy P, Liu L, Adhikari D, Jagarlamudi K, et al. (2008). Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319: 611-613. http://dx.doi.org/10.1126/science.1152257 PMid:18239123   Reyna XF, Montoya HM, Castrellon VV, Rincon AM, et al. (2010). Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Genet. Mol. Res. 9: 875-883. http://dx.doi.org/10.4238/vol9-2gmr745 PMid:20467980   Ryan J and Costigan DC (1993). Determination of the histological distribution of insulin like growth factor 1 receptors in the rat gut. Gut 34: 1693-1697. http://dx.doi.org/10.1136/gut.34.12.1693 PMid:8282258 PMCid:1374465   Song G, Ouyang G and Bao S (2005). The activation of Akt/PKB signaling pathway and cell survival. J. Cell Mol. Med. 9: 59-71. http://dx.doi.org/10.1111/j.1582-4934.2005.tb00337.x PMid:15784165   Sun Z, Wang X, Wallen R, Deng X, et al. (1998). The influence of apoptosis on intestinal barrier integrity in rats. Scand. J. Gastroenterol. 33: 415-422. http://dx.doi.org/10.1080/00365529850171053 PMid:9605264   Tuo B, Wen G, Song P, Xu J, et al. (2011). Genistein stimulates duodenal HCO(3)(-) secretion through PI3K pathway in mice. Eur. J. Pharmacol. 651: 159-167. http://dx.doi.org/10.1016/j.ejphar.2010.10.070 PMid:21093426   Wang JY and Johnson LR (1991). Polyamines and ornithine decarboxylase during repair of duodenal mucosa after stress in rats. Gastroenterology 100: 333-343. PMid:1702074   Wang JY and Johnson LR (1992). Luminal polyamines substitute for tissue polyamines in duodenal mucosal repair after stress in rats. Gastroenterology 102: 1109-1117. PMid:1551519   Wang W, Xu J, Li L, Wang P, et al. (2010). Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull. 83: 196-201. http://dx.doi.org/10.1016/j.brainresbull.2010.07.003 PMid:20637265   Wang XT, Xie YB and Xiao Q (2011). Lentivirus-mediated RNA interference targeting E2F-1 inhibits human gastric cancer MGC-803 cell growth in vivo. Exp. Mol. Med. 43: 638-645. http://dx.doi.org/10.3858/emm.2011.43.11.072 PMid:21869593 PMCid:3249590   Warzecha Z, Dembinski A, Ceranowicz P, Dembinski M, et al. (2006). Influence of ghrelin on gastric and duodenal growth and expression of digestive enzymes in young mature rats. J. Physiol. Pharmacol. 57: 425-437. PMid:17033095   Xiong X, Ren HZ, Li MH, Mei JH, et al. (2011). Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol. Oncol. Res. 17: 931-937. http://dx.doi.org/10.1007/s12253-011-9406-7 PMid:21688200   Zhao J, Harada N, Sobue K, Katsuya H, et al. (2009). Insulin-like growth factor-I reduces stress-induced gastric mucosal injury by inhibiting neutrophil activation in mice. Growth Horm. IGF Res. 19: 136-145. http://dx.doi.org/10.1016/j.ghir.2008.08.003 PMid:18809348   Zhou ZQ, Wang T, Pan LM, Huang RH, et al. (2007). FoxO4 is the main forkhead transcriptional factor localized in the gastrointestinal tracts of pigs. J. Zhejiang Univ. Sci. B 8: 39-44. http://dx.doi.org/10.1631/jzus.2007.B0039 PMid:17173361 PMCid:1764920
Y. Yang, Huang, J. M., Ju, Z. H., Li, Q. L., Zhou, L., Li, R. L., Li, J. B., Shi, F. X., Zhong, J. F., and Wang, C. F., Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle, vol. 11, pp. 2909-2916, 2012.
Andersson L, Lunden A, Sigurdardottir S, Davies CJ, et al. (1988). Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27: 273-280. http://dx.doi.org/10.1007/BF00376122 PMid:2894354   Ast G (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5: 773-782. http://dx.doi.org/10.1038/nrg1451 PMid:15510168   Awdeh ZL and Alper CA (1980). Inherited structural polymorphism of the fourth component of human complement. Proc. Natl. Acad. Sci. U. S. A. 77: 3576-3580. http://dx.doi.org/10.1073/pnas.77.6.3576 PMid:6932037 PMCid:349660   Belt KT, Yu CY, Carroll MC and Porter RR (1985). Polymorphism of human complement component C4. Immunogenetics 21: 173-180. http://dx.doi.org/10.1007/BF00364869 PMid:3838531   Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128. http://dx.doi.org/10.1053/tvjl.2002.0724 PMid:12359466   Chacko E and Ranganathan S (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics 10 (Suppl 3): S11. http://dx.doi.org/10.1186/1471-2164-10-S3-S11 PMid:19958474 PMCid:2788363   Cox BJ and Robins DM (1988). Tissue-specific variation in C4 and Slp gene regulation. Nucleic Acids Res. 16: 6857-6870. http://dx.doi.org/10.1093/nar/16.14.6857 PMid:3405752 PMCid:338338   Dahl MR, Thiel S, Matsushita M, Fujita T, et al. (2001). MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15: 127-135. http://dx.doi.org/10.1016/S1074-7613(01)00161-3   Dodds AW and Law SK (1990). The complement component C4 of mammals. Biochem. J. 265: 495-502. PMid:2302180 PMCid:1136911   Galante PA, Sakabe NJ, Kirschbaum-Slager N and de Souza SJ (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA 10: 757-765. http://dx.doi.org/10.1261/rna.5123504 PMid:15100430 PMCid:1370565   Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546. http://dx.doi.org/10.1038/nbt964 PMid:15122293   Giles CM (1984). A new genetic variant for Chido. Vox Sang. 46: 149-156. http://dx.doi.org/10.1111/j.1423-0410.1984.tb00067.x PMid:6710967   Guerra-Junior G, Grumach AS, de Lemos-Marini SH, Kirschfink M, et al. (2008). Complement 4 phenotypes and genotypes in Brazilian patients with classical 21-hydroxylase deficiency. Clin. Exp. Immunol. 155: 182-188. http://dx.doi.org/10.1111/j.1365-2249.2008.03838.x PMid:19137635 PMCid:2675248   Günther J, Koczan D, Yang W, Nurnberg G, et al. (2009). Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40: 31. http://dx.doi.org/10.1051/vetres/2009014 PMid:19321125 PMCid:2695127   Hull J, Campino S, Rowlands K, Chan MS, et al. (2007). Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3: e99. http://dx.doi.org/10.1371/journal.pgen.0030099 PMid:17571926 PMCid:1904363   Ju Z, Wang C, Li Q, Hou M, et al. (2011). Alternative splicing and mRNA expression analysis of bovine SLAMF7 gene in healthy and mastitis mammary tissues. Mol. Biol. Rep. DOI: 10.1007/s11033-011-1198-z. http://dx.doi.org/10.1007/s11033-011-1198-z   Keren H, Lev-Maor G and Ast G (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11: 345-355. http://dx.doi.org/10.1038/nrg2776 PMid:20376054   Kim E, Magen A and Ast G (2007). Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35: 125-131. http://dx.doi.org/10.1093/nar/gkl924 PMid:17158149 PMCid:1802581   Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. http://dx.doi.org/10.1186/1471-2105-6-62 PMid:15780134 PMCid:1274258   Le Hir H, Charlet-Berguerand N, de Franciscis V and Thermes C (2002). 5'-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology 63: 84-91. http://dx.doi.org/10.1159/000065725 PMid:12187076   Liu HX, Cartegni L, Zhang MQ and Krainer AR (2001). A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27: 55-58. http://dx.doi.org/10.1038/83762 PMid:11137998   Morera AL, Henry M, Garcia-Hernandez A and Fernandez-Lopez L (2007). Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Actas Esp. Psiquiatr. 35: 249-252. PMid:17592787   Pattanakitsakul S, Zheng JH, Natsuume-Sakai S, Takahashi M, et al. (1992). Aberrant splicing caused by the insertion of the B2 sequence into an intron of the complement C4 gene is the basis for low C4 production in H-2k mice. J. Biol. Chem. 267: 7814-7820. PMid:1373139   Petri M, Watson R, Winkelstein JA and McLean RH (1993). Clinical expression of systemic lupus erythematosus in patients with C4A deficiency. Medicine 72: 236-244. http://dx.doi.org/10.1097/00005792-199307000-00003 PMid:8341140   Rainard P and Poutrel B (1995). Deposition of complement components on Streptococcus agalactiae in bovine milk in the absence of inflammation. Infect. Immun. 63: 3422-3427. PMid:7642272 PMCid:173471   Rio DC (1991). Regulation of Drosophila P element transposition. Trends Genet. 7: 282-287. PMid:1662417   Rupp R and Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. 34: 671-688. http://dx.doi.org/10.1051/vetres:2003020 PMid:14556700   Vergani D, Johnston C, Abdullah N and Barnett AH (1983). Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br. Med. J. 286: 926-928. http://dx.doi.org/10.1136/bmj.286.6369.926   Wang Z, Zhang S and Wang G (2008). Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25: 264-270. http://dx.doi.org/10.1016/j.fsi.2008.05.010 PMid:18657447   Witte DP, Welch TR and Beischel LS (1991). Detection and cellular localization of human C4 gene expression in the renal tubular epithelial cells and other extrahepatic epithelial sources. Am. J. Pathol. 139: 717-724. PMid:1928296 PMCid:1886325   Yang Y, Chung EK, Zhou B, Blanchong CA, et al. (2003). Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J. Immunol. 171: 2734-2745. PMid:12928427   Yu CY, Belt KT, Giles CM, Campbell RD, et al. (1986). Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J. 5: 2873-2881. PMid:2431902 PMCid:1167237