Publications

Found 22 results
Filters: Author is Y. Ma  [Clear All Filters]
2016
L. An, Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., Du, P., An, L., Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., and Du, P., Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice, vol. 15, p. -, 2016.
L. An, Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., Du, P., An, L., Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., and Du, P., Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice, vol. 15, p. -, 2016.
R. G. Bade, Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., and Hasi, A., Genome-wide identification and analysis of the SGR gene family in Cucumis melo L., vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31560561). REFERENCESAkhtar MS, Goldschmidt EE, John I, Rodoni S, et al (1999). Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). J. Exp. Bot. 50: 1115-1122. http://dx.doi.org/10.1093/jxb/50.336.1115 Altschul SF, Gish W, Miller W, Myers EW, et al (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 Arabidopsis Genome Initiativeet al (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. http://dx.doi.org/10.1038/35048692 Arntzen CJ, et al (1978). Dynamic structural features of chloroplast lamellae. Curr. Top. Bioenerg. 8: 112-155. Aubry S, Mani J, Hörtensteiner S, et al (2008). Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol. Biol. 67: 243-256. http://dx.doi.org/10.1007/s11103-008-9314-8 Bailey TL, Boden M, Buske FA, Frith M, et al (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37: W202-8. http://dx.doi.org/10.1093/nar/gkp335 Buchanan-Wollaston V, et al (1997). The molecular biology of leaf senescence. J. Exp. Bot. 48: 181-199. http://dx.doi.org/10.1093/jxb/48.2.181 Chenna R, Sugawara H, Koike T, Lopez R, et al (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500. http://dx.doi.org/10.1093/nar/gkg500 Finn RD, Bateman A, Clements J, Coggill P, et al (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, et al (2012). The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109: 11872-11877. http://dx.doi.org/10.1073/pnas.1205415109 Grassl J, Pružinská A, Hörtensteiner S, Taylor NL, et al (2012). Early events in plastid protein degradation in stay-green Arabidopsis reveal differential regulation beyond the retention of LHCII and chlorophyll. J. Proteome Res. 11: 5443-5452. http://dx.doi.org/10.1021/pr300691k Hall TA, et al (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hörtensteiner S, et al (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 14: 155-162. http://dx.doi.org/10.1016/j.tplants.2009.01.002 Hörtensteiner S, Kräutler B, et al (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807: 977-988. http://dx.doi.org/10.1016/j.bbabio.2010.12.007 Hu L, Liu S, et al (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 34: 624-633. http://dx.doi.org/10.1590/S1415-47572011005000054 Hu ZL, Deng L, Yan B, Pan Y, et al (2011). Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant. 55: 27-34. http://dx.doi.org/10.1007/s10535-011-0004-z Jiang H, Li M, Liang N, Yan H, et al (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52: 197-209. http://dx.doi.org/10.1111/j.1365-313X.2007.03221.x Kusaba M, Ito H, Morita R, Iida S, et al (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362-1375. http://dx.doi.org/10.1105/tpc.106.042911 Letunic I, Copley RR, Schmidt S, Ciccarelli FD, et al (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32: D142-D144. http://dx.doi.org/10.1093/nar/gkh088 Lim PO, Woo HR, Nam HG, et al (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278. http://dx.doi.org/10.1016/S1360-1385(03)00103-1 Lim PO, Kim HJ, Nam HG, et al (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115-136. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316 Luo Z, Zhang J, Li J, Yang C, et al (2013). A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 198: 442-452. http://dx.doi.org/10.1111/nph.12175 Markwell JP, Thornber JP, Boggs RT, et al (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci. USA 76: 1233-1235. http://dx.doi.org/10.1073/pnas.76.3.1233 Matile P, et al (2000). Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp. Gerontol. 35: 145-158. http://dx.doi.org/10.1016/S0531-5565(00)00081-4 Park SY, Yu JW, Park JS, Li J, et al (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19: 1649-1664. http://dx.doi.org/10.1105/tpc.106.044891 Pilkington SM, Montefiori M, Jameson PE, Allan AC, et al (2012). The control of chlorophyll levels in maturing kiwifruit. Planta 236: 1615-1628. http://dx.doi.org/10.1007/s00425-012-1723-x Procházková D, Wilhelmová N, et al (2007). Leaf senescence and activities of the antioxidant enzymes. Biol. Plant. 51: 401-406. http://dx.doi.org/10.1007/s10535-007-0088-7 Pruzinská A, Tanner G, Aubry S, Anders I, et al (2005). Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139: 52-63. http://dx.doi.org/10.1104/pp.105.065870 Ren G, An K, Liao Y, Zhou X, et al (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144: 1429-1441. http://dx.doi.org/10.1104/pp.107.100172 Rong H, Tang Y, Zhang H, Wu P, et al (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170: 1367-1373. http://dx.doi.org/10.1016/j.jplph.2013.05.016 Sakuraba Y, Schelbert S, Park SY, Han SH, et al (2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24: 507-518. http://dx.doi.org/10.1105/tpc.111.089474 Sato Y, Morita R, Nishimura M, Yamaguchi H, et al (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl. Acad. Sci. USA 104: 14169-14174. http://dx.doi.org/10.1073/pnas.0705521104 Saitou N, Nei M, et al (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Schultz J, Milpetz F, Bork P, Ponting CP, et al (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95: 5857-5864. http://dx.doi.org/10.1073/pnas.95.11.5857 Sharma MK, Kumar R, Solanke AU, Sharma R, et al (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol. Genet. Genomics 284: 455-475. http://dx.doi.org/10.1007/s00438-010-0580-1 Spano G, Di Fonzo N, Perrotta C, Platani C, et al (2003). Physiological characterization of ‘stay green’ mutants in durum wheat. J. Exp. Bot. 54: 1415-1420. http://dx.doi.org/10.1093/jxb/erg150 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Tang Y, Li M, Chen Y, Wu P, et al (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168: 1952-1959. http://dx.doi.org/10.1016/j.jplph.2011.05.026 Thomas H, Smart CM, et al (1993). Crops that stay green. Ann. Appl. Biol. 123: 193-223. http://dx.doi.org/10.1111/j.1744-7348.1993.tb04086.x Zhou C, Han L, Pislariu C, Nakashima J, et al (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157: 1483-1496. http://dx.doi.org/10.1104/pp.111.185140  
R. G. Bade, Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., and Hasi, A., Genome-wide identification and analysis of the SGR gene family in Cucumis melo L., vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31560561). REFERENCESAkhtar MS, Goldschmidt EE, John I, Rodoni S, et al (1999). Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). J. Exp. Bot. 50: 1115-1122. http://dx.doi.org/10.1093/jxb/50.336.1115 Altschul SF, Gish W, Miller W, Myers EW, et al (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 Arabidopsis Genome Initiativeet al (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. http://dx.doi.org/10.1038/35048692 Arntzen CJ, et al (1978). Dynamic structural features of chloroplast lamellae. Curr. Top. Bioenerg. 8: 112-155. Aubry S, Mani J, Hörtensteiner S, et al (2008). Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol. Biol. 67: 243-256. http://dx.doi.org/10.1007/s11103-008-9314-8 Bailey TL, Boden M, Buske FA, Frith M, et al (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37: W202-8. http://dx.doi.org/10.1093/nar/gkp335 Buchanan-Wollaston V, et al (1997). The molecular biology of leaf senescence. J. Exp. Bot. 48: 181-199. http://dx.doi.org/10.1093/jxb/48.2.181 Chenna R, Sugawara H, Koike T, Lopez R, et al (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500. http://dx.doi.org/10.1093/nar/gkg500 Finn RD, Bateman A, Clements J, Coggill P, et al (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, et al (2012). The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109: 11872-11877. http://dx.doi.org/10.1073/pnas.1205415109 Grassl J, Pružinská A, Hörtensteiner S, Taylor NL, et al (2012). Early events in plastid protein degradation in stay-green Arabidopsis reveal differential regulation beyond the retention of LHCII and chlorophyll. J. Proteome Res. 11: 5443-5452. http://dx.doi.org/10.1021/pr300691k Hall TA, et al (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hörtensteiner S, et al (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 14: 155-162. http://dx.doi.org/10.1016/j.tplants.2009.01.002 Hörtensteiner S, Kräutler B, et al (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807: 977-988. http://dx.doi.org/10.1016/j.bbabio.2010.12.007 Hu L, Liu S, et al (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 34: 624-633. http://dx.doi.org/10.1590/S1415-47572011005000054 Hu ZL, Deng L, Yan B, Pan Y, et al (2011). Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant. 55: 27-34. http://dx.doi.org/10.1007/s10535-011-0004-z Jiang H, Li M, Liang N, Yan H, et al (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52: 197-209. http://dx.doi.org/10.1111/j.1365-313X.2007.03221.x Kusaba M, Ito H, Morita R, Iida S, et al (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362-1375. http://dx.doi.org/10.1105/tpc.106.042911 Letunic I, Copley RR, Schmidt S, Ciccarelli FD, et al (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32: D142-D144. http://dx.doi.org/10.1093/nar/gkh088 Lim PO, Woo HR, Nam HG, et al (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278. http://dx.doi.org/10.1016/S1360-1385(03)00103-1 Lim PO, Kim HJ, Nam HG, et al (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115-136. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316 Luo Z, Zhang J, Li J, Yang C, et al (2013). A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 198: 442-452. http://dx.doi.org/10.1111/nph.12175 Markwell JP, Thornber JP, Boggs RT, et al (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci. USA 76: 1233-1235. http://dx.doi.org/10.1073/pnas.76.3.1233 Matile P, et al (2000). Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp. Gerontol. 35: 145-158. http://dx.doi.org/10.1016/S0531-5565(00)00081-4 Park SY, Yu JW, Park JS, Li J, et al (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19: 1649-1664. http://dx.doi.org/10.1105/tpc.106.044891 Pilkington SM, Montefiori M, Jameson PE, Allan AC, et al (2012). The control of chlorophyll levels in maturing kiwifruit. Planta 236: 1615-1628. http://dx.doi.org/10.1007/s00425-012-1723-x Procházková D, Wilhelmová N, et al (2007). Leaf senescence and activities of the antioxidant enzymes. Biol. Plant. 51: 401-406. http://dx.doi.org/10.1007/s10535-007-0088-7 Pruzinská A, Tanner G, Aubry S, Anders I, et al (2005). Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139: 52-63. http://dx.doi.org/10.1104/pp.105.065870 Ren G, An K, Liao Y, Zhou X, et al (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144: 1429-1441. http://dx.doi.org/10.1104/pp.107.100172 Rong H, Tang Y, Zhang H, Wu P, et al (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170: 1367-1373. http://dx.doi.org/10.1016/j.jplph.2013.05.016 Sakuraba Y, Schelbert S, Park SY, Han SH, et al (2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24: 507-518. http://dx.doi.org/10.1105/tpc.111.089474 Sato Y, Morita R, Nishimura M, Yamaguchi H, et al (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl. Acad. Sci. USA 104: 14169-14174. http://dx.doi.org/10.1073/pnas.0705521104 Saitou N, Nei M, et al (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Schultz J, Milpetz F, Bork P, Ponting CP, et al (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95: 5857-5864. http://dx.doi.org/10.1073/pnas.95.11.5857 Sharma MK, Kumar R, Solanke AU, Sharma R, et al (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol. Genet. Genomics 284: 455-475. http://dx.doi.org/10.1007/s00438-010-0580-1 Spano G, Di Fonzo N, Perrotta C, Platani C, et al (2003). Physiological characterization of ‘stay green’ mutants in durum wheat. J. Exp. Bot. 54: 1415-1420. http://dx.doi.org/10.1093/jxb/erg150 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Tang Y, Li M, Chen Y, Wu P, et al (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168: 1952-1959. http://dx.doi.org/10.1016/j.jplph.2011.05.026 Thomas H, Smart CM, et al (1993). Crops that stay green. Ann. Appl. Biol. 123: 193-223. http://dx.doi.org/10.1111/j.1744-7348.1993.tb04086.x Zhou C, Han L, Pislariu C, Nakashima J, et al (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157: 1483-1496. http://dx.doi.org/10.1104/pp.111.185140  
R. G. Bade, Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., and Hasi, A., Genome-wide identification and analysis of the SGR gene family in Cucumis melo L., vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31560561). REFERENCESAkhtar MS, Goldschmidt EE, John I, Rodoni S, et al (1999). Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). J. Exp. Bot. 50: 1115-1122. http://dx.doi.org/10.1093/jxb/50.336.1115 Altschul SF, Gish W, Miller W, Myers EW, et al (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 Arabidopsis Genome Initiativeet al (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. http://dx.doi.org/10.1038/35048692 Arntzen CJ, et al (1978). Dynamic structural features of chloroplast lamellae. Curr. Top. Bioenerg. 8: 112-155. Aubry S, Mani J, Hörtensteiner S, et al (2008). Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol. Biol. 67: 243-256. http://dx.doi.org/10.1007/s11103-008-9314-8 Bailey TL, Boden M, Buske FA, Frith M, et al (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37: W202-8. http://dx.doi.org/10.1093/nar/gkp335 Buchanan-Wollaston V, et al (1997). The molecular biology of leaf senescence. J. Exp. Bot. 48: 181-199. http://dx.doi.org/10.1093/jxb/48.2.181 Chenna R, Sugawara H, Koike T, Lopez R, et al (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500. http://dx.doi.org/10.1093/nar/gkg500 Finn RD, Bateman A, Clements J, Coggill P, et al (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, et al (2012). The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109: 11872-11877. http://dx.doi.org/10.1073/pnas.1205415109 Grassl J, Pružinská A, Hörtensteiner S, Taylor NL, et al (2012). Early events in plastid protein degradation in stay-green Arabidopsis reveal differential regulation beyond the retention of LHCII and chlorophyll. J. Proteome Res. 11: 5443-5452. http://dx.doi.org/10.1021/pr300691k Hall TA, et al (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hörtensteiner S, et al (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 14: 155-162. http://dx.doi.org/10.1016/j.tplants.2009.01.002 Hörtensteiner S, Kräutler B, et al (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807: 977-988. http://dx.doi.org/10.1016/j.bbabio.2010.12.007 Hu L, Liu S, et al (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 34: 624-633. http://dx.doi.org/10.1590/S1415-47572011005000054 Hu ZL, Deng L, Yan B, Pan Y, et al (2011). Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant. 55: 27-34. http://dx.doi.org/10.1007/s10535-011-0004-z Jiang H, Li M, Liang N, Yan H, et al (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52: 197-209. http://dx.doi.org/10.1111/j.1365-313X.2007.03221.x Kusaba M, Ito H, Morita R, Iida S, et al (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362-1375. http://dx.doi.org/10.1105/tpc.106.042911 Letunic I, Copley RR, Schmidt S, Ciccarelli FD, et al (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32: D142-D144. http://dx.doi.org/10.1093/nar/gkh088 Lim PO, Woo HR, Nam HG, et al (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278. http://dx.doi.org/10.1016/S1360-1385(03)00103-1 Lim PO, Kim HJ, Nam HG, et al (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115-136. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316 Luo Z, Zhang J, Li J, Yang C, et al (2013). A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 198: 442-452. http://dx.doi.org/10.1111/nph.12175 Markwell JP, Thornber JP, Boggs RT, et al (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci. USA 76: 1233-1235. http://dx.doi.org/10.1073/pnas.76.3.1233 Matile P, et al (2000). Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp. Gerontol. 35: 145-158. http://dx.doi.org/10.1016/S0531-5565(00)00081-4 Park SY, Yu JW, Park JS, Li J, et al (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19: 1649-1664. http://dx.doi.org/10.1105/tpc.106.044891 Pilkington SM, Montefiori M, Jameson PE, Allan AC, et al (2012). The control of chlorophyll levels in maturing kiwifruit. Planta 236: 1615-1628. http://dx.doi.org/10.1007/s00425-012-1723-x Procházková D, Wilhelmová N, et al (2007). Leaf senescence and activities of the antioxidant enzymes. Biol. Plant. 51: 401-406. http://dx.doi.org/10.1007/s10535-007-0088-7 Pruzinská A, Tanner G, Aubry S, Anders I, et al (2005). Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139: 52-63. http://dx.doi.org/10.1104/pp.105.065870 Ren G, An K, Liao Y, Zhou X, et al (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144: 1429-1441. http://dx.doi.org/10.1104/pp.107.100172 Rong H, Tang Y, Zhang H, Wu P, et al (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170: 1367-1373. http://dx.doi.org/10.1016/j.jplph.2013.05.016 Sakuraba Y, Schelbert S, Park SY, Han SH, et al (2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24: 507-518. http://dx.doi.org/10.1105/tpc.111.089474 Sato Y, Morita R, Nishimura M, Yamaguchi H, et al (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl. Acad. Sci. USA 104: 14169-14174. http://dx.doi.org/10.1073/pnas.0705521104 Saitou N, Nei M, et al (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Schultz J, Milpetz F, Bork P, Ponting CP, et al (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95: 5857-5864. http://dx.doi.org/10.1073/pnas.95.11.5857 Sharma MK, Kumar R, Solanke AU, Sharma R, et al (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol. Genet. Genomics 284: 455-475. http://dx.doi.org/10.1007/s00438-010-0580-1 Spano G, Di Fonzo N, Perrotta C, Platani C, et al (2003). Physiological characterization of ‘stay green’ mutants in durum wheat. J. Exp. Bot. 54: 1415-1420. http://dx.doi.org/10.1093/jxb/erg150 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Tang Y, Li M, Chen Y, Wu P, et al (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168: 1952-1959. http://dx.doi.org/10.1016/j.jplph.2011.05.026 Thomas H, Smart CM, et al (1993). Crops that stay green. Ann. Appl. Biol. 123: 193-223. http://dx.doi.org/10.1111/j.1744-7348.1993.tb04086.x Zhou C, Han L, Pislariu C, Nakashima J, et al (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157: 1483-1496. http://dx.doi.org/10.1104/pp.111.185140  
R. G. Bade, Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., Hasi, A., Bade, R. G., Bao, M. L., Jin, W. Y., Ma, Y., Niu, Y. D., and Hasi, A., Genome-wide identification and analysis of the SGR gene family in Cucumis melo L., vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31560561). REFERENCESAkhtar MS, Goldschmidt EE, John I, Rodoni S, et al (1999). Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). J. Exp. Bot. 50: 1115-1122. http://dx.doi.org/10.1093/jxb/50.336.1115 Altschul SF, Gish W, Miller W, Myers EW, et al (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 Arabidopsis Genome Initiativeet al (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. http://dx.doi.org/10.1038/35048692 Arntzen CJ, et al (1978). Dynamic structural features of chloroplast lamellae. Curr. Top. Bioenerg. 8: 112-155. Aubry S, Mani J, Hörtensteiner S, et al (2008). Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol. Biol. 67: 243-256. http://dx.doi.org/10.1007/s11103-008-9314-8 Bailey TL, Boden M, Buske FA, Frith M, et al (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37: W202-8. http://dx.doi.org/10.1093/nar/gkp335 Buchanan-Wollaston V, et al (1997). The molecular biology of leaf senescence. J. Exp. Bot. 48: 181-199. http://dx.doi.org/10.1093/jxb/48.2.181 Chenna R, Sugawara H, Koike T, Lopez R, et al (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500. http://dx.doi.org/10.1093/nar/gkg500 Finn RD, Bateman A, Clements J, Coggill P, et al (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, et al (2012). The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109: 11872-11877. http://dx.doi.org/10.1073/pnas.1205415109 Grassl J, Pružinská A, Hörtensteiner S, Taylor NL, et al (2012). Early events in plastid protein degradation in stay-green Arabidopsis reveal differential regulation beyond the retention of LHCII and chlorophyll. J. Proteome Res. 11: 5443-5452. http://dx.doi.org/10.1021/pr300691k Hall TA, et al (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hörtensteiner S, et al (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 14: 155-162. http://dx.doi.org/10.1016/j.tplants.2009.01.002 Hörtensteiner S, Kräutler B, et al (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807: 977-988. http://dx.doi.org/10.1016/j.bbabio.2010.12.007 Hu L, Liu S, et al (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 34: 624-633. http://dx.doi.org/10.1590/S1415-47572011005000054 Hu ZL, Deng L, Yan B, Pan Y, et al (2011). Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype. Biol. Plant. 55: 27-34. http://dx.doi.org/10.1007/s10535-011-0004-z Jiang H, Li M, Liang N, Yan H, et al (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52: 197-209. http://dx.doi.org/10.1111/j.1365-313X.2007.03221.x Kusaba M, Ito H, Morita R, Iida S, et al (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362-1375. http://dx.doi.org/10.1105/tpc.106.042911 Letunic I, Copley RR, Schmidt S, Ciccarelli FD, et al (2004). SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32: D142-D144. http://dx.doi.org/10.1093/nar/gkh088 Lim PO, Woo HR, Nam HG, et al (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8: 272-278. http://dx.doi.org/10.1016/S1360-1385(03)00103-1 Lim PO, Kim HJ, Nam HG, et al (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115-136. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316 Luo Z, Zhang J, Li J, Yang C, et al (2013). A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 198: 442-452. http://dx.doi.org/10.1111/nph.12175 Markwell JP, Thornber JP, Boggs RT, et al (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci. USA 76: 1233-1235. http://dx.doi.org/10.1073/pnas.76.3.1233 Matile P, et al (2000). Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp. Gerontol. 35: 145-158. http://dx.doi.org/10.1016/S0531-5565(00)00081-4 Park SY, Yu JW, Park JS, Li J, et al (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19: 1649-1664. http://dx.doi.org/10.1105/tpc.106.044891 Pilkington SM, Montefiori M, Jameson PE, Allan AC, et al (2012). The control of chlorophyll levels in maturing kiwifruit. Planta 236: 1615-1628. http://dx.doi.org/10.1007/s00425-012-1723-x Procházková D, Wilhelmová N, et al (2007). Leaf senescence and activities of the antioxidant enzymes. Biol. Plant. 51: 401-406. http://dx.doi.org/10.1007/s10535-007-0088-7 Pruzinská A, Tanner G, Aubry S, Anders I, et al (2005). Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 139: 52-63. http://dx.doi.org/10.1104/pp.105.065870 Ren G, An K, Liao Y, Zhou X, et al (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144: 1429-1441. http://dx.doi.org/10.1104/pp.107.100172 Rong H, Tang Y, Zhang H, Wu P, et al (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170: 1367-1373. http://dx.doi.org/10.1016/j.jplph.2013.05.016 Sakuraba Y, Schelbert S, Park SY, Han SH, et al (2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24: 507-518. http://dx.doi.org/10.1105/tpc.111.089474 Sato Y, Morita R, Nishimura M, Yamaguchi H, et al (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl. Acad. Sci. USA 104: 14169-14174. http://dx.doi.org/10.1073/pnas.0705521104 Saitou N, Nei M, et al (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Schultz J, Milpetz F, Bork P, Ponting CP, et al (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95: 5857-5864. http://dx.doi.org/10.1073/pnas.95.11.5857 Sharma MK, Kumar R, Solanke AU, Sharma R, et al (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol. Genet. Genomics 284: 455-475. http://dx.doi.org/10.1007/s00438-010-0580-1 Spano G, Di Fonzo N, Perrotta C, Platani C, et al (2003). Physiological characterization of ‘stay green’ mutants in durum wheat. J. Exp. Bot. 54: 1415-1420. http://dx.doi.org/10.1093/jxb/erg150 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Tang Y, Li M, Chen Y, Wu P, et al (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168: 1952-1959. http://dx.doi.org/10.1016/j.jplph.2011.05.026 Thomas H, Smart CM, et al (1993). Crops that stay green. Ann. Appl. Biol. 123: 193-223. http://dx.doi.org/10.1111/j.1744-7348.1993.tb04086.x Zhou C, Han L, Pislariu C, Nakashima J, et al (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157: 1483-1496. http://dx.doi.org/10.1104/pp.111.185140  
Z. P. Yan, Tong, X., Liu, S. T., Ma, Y., Peng, S. F., Yang, X., Fan, H., Yan, Z. P., Tong, X., Liu, S. T., Ma, Y., Peng, S. F., Yang, X., and Fan, H., Role and diagnostic value of gene variants in assessing the risk of chronic obstructive pulmonary disease, vol. 15, p. -, 2016.
Z. P. Yan, Tong, X., Liu, S. T., Ma, Y., Peng, S. F., Yang, X., Fan, H., Yan, Z. P., Tong, X., Liu, S. T., Ma, Y., Peng, S. F., Yang, X., and Fan, H., Role and diagnostic value of gene variants in assessing the risk of chronic obstructive pulmonary disease, vol. 15, p. -, 2016.
2015
J. S. Xi, Nie, C. L., Wang, J., Ma, Y., and Ma, A. H., Association of CD226 polymorphisms with the susceptibility to type 1 diabetes in Chinese children, vol. 14, pp. 15249-15255, 2015.
W. X. Chen, Ma, Y., and Liu, K. H., Association of MyoD1a and MyoD1b gene polymorphisms and meat quality traits in rainbow trout, vol. 14, pp. 9034-9044, 2015.
W. X. Chen and Ma, Y., Characterization and expression of the calpastatin gene in Cyprinus carpio, vol. 14, pp. 7406-7416, 2015.
C. L. Nie, Ren, W. H., Ma, Y., Xi, J. S., and Han, B., Circulating miR-125b as a biomarker of Ewing's sarcoma in Chinese children, vol. 14, pp. 19049-19056, 2015.
S. Zhang, Gao, X., Ma, Y., Jiang, J., Dai, Z., Yin, X., Min, W., Hui, W., and Wang, B., Expression and significance of SATB1 in the development of breast cancer, vol. 14, pp. 3309-3317, 2015.
J. Wu, Wang, F. J., Wang, C. Y., Yu, K. X., Ma, Y., Chen, T., Li, Y. H., and Zheng, Y., Modification research on in wall of capillary copper tube with Norland optical adhesive 68 in a double stereo PCR microfluidic chip, vol. 14, pp. 13603-13611, 2015.
H. Chen, Ma, Y., Zhang, W. F., Ma, T., and Wu, H. X., Molecular phylogeny of Colletotrichum (Sordariomycetes: Glomerellaceae) inferred from multiple gene sequences, vol. 14, pp. 13649-13662, 2015.
Y. Ma, Bao, L., Wang, H., and Shi, S., A multi-center study on the prophylactic application of antibiotics in aseptic operations, vol. 14, pp. 2356-2364, 2015.
L. Li, Wei, P., Zhang, M. - H., Zhang, W., Ma, Y., Fang, X., Hao, C. - L., and Zhang, Z. - H., Roles of the AIB1 protein in the proliferation and transformation of human esophageal squamous cell carcinoma, vol. 14, pp. 10376-10383, 2015.
X. Y. Liu, Li, G. Q., Ma, Y., and Zhao, L. J., Topological centrality-based identification of hub genes and pathways associated with acute viral respiratory infection in infants, vol. 14, pp. 18334-18343, 2015.
2012
Y. Ma, Lu, M., Li, J. - Y., Qin, Y., and Gong, X. - G., Evolutive and structural characterization of Nostoc commune iron-superoxide dismutase that is fit for modification, vol. 11, pp. 3607-3617, 2012.
Behrend L, Henderson G and Zwacka RM (2003). Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 31: 1441-1444. http://dx.doi.org/10.1042/BST0311441 PMid:14641084   Brioukhanov AL, Nesatyy VJ and Netrusov AI (2006). Purification and characterization of Fe-containing superoxide dismutase from Methanobrevibacter arboriphilus strain AZ. Biochemistry 71: 441-447. PMid:16615865   Chen X, Kodama T, Iida T and Honda T (2007). Demonstration and characterization of manganese superoxide dismutase of Providencia alcalifaciens. Microbiol. Immunol. 51: 951-961. PMid:17951985   Choudhary M, Jetley UK, Abash KM, Zutshi S, et al. (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 66: 204-209. http://dx.doi.org/10.1016/j.ecoenv.2006.02.002 PMid:16600377   Cooper JB, McIntyre K, Badasso MO, Wood SP, et al. (1995). X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstroms resolution reveals novel dimer-dimer interactions. J. Mol. Biol. 246: 531-544. http://dx.doi.org/10.1006/jmbi.1994.0105 PMid:7877174   Delanian S, Martin M, Bravard A, Luccioni C, et al. (2001). Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother. Oncol. 58: 325-331. http://dx.doi.org/10.1016/S0167-8140(00)00332-7   Englert C, Horne M and Pfeifer F (1990). Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet. 222: 225-232. http://dx.doi.org/10.1007/BF00633822 PMid:1703266   Go M and Miyazawa S (1980). Relationship between mutability, polarity and exteriority of amino acid residues in protein evolution. Int. J. Pept. Protein Res. 15: 211-224. http://dx.doi.org/10.1111/j.1399-3011.1980.tb02570.x PMid:7380605   Gottlieb MG, Schwanke CH, Santos AF, Jobim PF, et al. (2005). Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population. Genet. Mol. Res. 4: 691-703. PMid:16475114   Horne M, Englert C and Pfeifer F (1988). Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol. Gen. Genet. 213: 459-464. http://dx.doi.org/10.1007/BF00339616 PMid:3185512   Hu Y, Rosen DG, Zhou Y, Feng L, et al. (2005). Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J. Biol. Chem. 280: 39485-39492. http://dx.doi.org/10.1074/jbc.M503296200 PMid:16179351   Jubeh TT, Antler S, Haupt S, Barenholz Y, et al. (2005). Local prevention of oxidative stress in the intestinal epithelium of the rat by adhesive liposomes of superoxide dismutase and tempamine. Mol. Pharm. 2: 2-11. http://dx.doi.org/10.1021/mp0499095 PMid:15804172   Kim CS, Lee CH, Shin JS, Chung YS, et al. (1997). A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 25: 1085-1086. http://dx.doi.org/10.1093/nar/25.5.1085 PMid:9023124 PMCid:146538   Kopp J and Schwede T (2006). The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Res. 34: D315-D318. http://dx.doi.org/10.1093/nar/gkj056 PMid:16381875 PMCid:1347419   Li J, Zhou K, Meng X, Wu Q, et al. (2008). Increased ROS generation and SOD activity in heteroplasmic tissues of transmitochondrial mice with A3243G mitochondrial DNA mutation. Genet. Mol. Res. 7: 1054-1062. http://dx.doi.org/10.4238/vol7-4gmr480 PMid:19048484   Lu M, Gong X, Lu Y, Guo J, et al. (2006). Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells. Inhibition cell proliferation through the Akt/p27kip1 pathway. J. Biol. Chem. 281: 13620-13627. http://dx.doi.org/10.1074/jbc.M600523200 PMid:16551617   Marklund S and Marklund G (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474. http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x PMid:4215654   Oyanagui Y, Sato S and Inoue M (1991). Inhibition of carrageenan-induced paw edema by superoxide dismutase that binds to heparan sulfates on vascular endothelial cells. Biochem. Pharmacol. 42: 991-995. http://dx.doi.org/10.1016/0006-2952(91)90280-I   Parker MW and Blake CC (1988a). Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution. J. Mol. Biol. 199: 649-661. http://dx.doi.org/10.1016/0022-2836(88)90308-7   Parker MW and Blake CC (1988b). Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229: 377-382. http://dx.doi.org/10.1016/0014-5793(88)81160-8   Regelsberger G, Laaha U, Dietmann D, Ruker F, et al. (2004). The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization. J. Biol. Chem. 279: 44384-44393. http://dx.doi.org/10.1074/jbc.M406254200 PMid:15302891   Rengel RG, Filipovic-Grcic J, Cepelak I, Zanic-Grubisic T, et al. (2005). The effect of liposomes with superoxide dismutase on A2182 cells. Eur. J. Pharm. Biopharm. 60: 47-51. http://dx.doi.org/10.1016/j.ejpb.2004.12.002 PMid:15848055   Schwede T, Kopp J, Guex N and Peitsch MC (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. http://dx.doi.org/10.1093/nar/gkg520 PMid:12824332 PMCid:168927   Seo SN, Lee JH and Kim YM (2007). Characterization of an iron- and manganese-containing superoxide dismutase from Methylobacillus sp strain SK1 DSM 8269. Mol. Cells 23: 370-378. PMid:17646712   Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, et al. (2000). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J. Bacteriol. 182: 189-197. http://dx.doi.org/10.1128/JB.182.1.189-197.2000 PMid:10613879 PMCid:94256   Takenaka S, Koshiya J, Okugawa S, Takata A, et al. (2011). Fe-superoxide dismutase and 2-hydroxy-1,4-benzoquinone reductase preclude the auto-oxidation step in 4-aminophenol metabolism by Burkholderia sp strain AK-5. Biodegradation 22: 1-11. http://dx.doi.org/10.1007/s10532-010-9369-5 PMid:20480210   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Van CW, Bowler C, Villarroel R, Tsang EW, et al. (1990). Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 87: 9903-9907. http://dx.doi.org/10.1073/pnas.87.24.9903   Zhang Y, Zhao W, Zhang HJ, Domann FE, et al. (2002). Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res. 62: 1205-1212. PMid:11861405