Publications
Found 50 results
Filters: Author is M.T.V. Azeredo-Oliveira [Clear All Filters]
“Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae)”, vol. 15, p. -, 2016.
, “Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae)”, vol. 15, p. -, 2016.
, “Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae)”, vol. 15, p. -, 2016.
, “Cytogenetic analysis of Triatoma pseudomaculata Corrêa and Espínola, 1964 (Hemiptera, Triatominae) from different Brazilian states”, vol. 15, p. -, 2016.
, “Cytogenetic analysis of Triatoma pseudomaculata Corrêa and Espínola, 1964 (Hemiptera, Triatominae) from different Brazilian states”, vol. 15, p. -, 2016.
, “Cytogenetic analysis of Triatoma pseudomaculata Corrêa and Espínola, 1964 (Hemiptera, Triatominae) from different Brazilian states”, vol. 15, p. -, 2016.
, “Description of the diploid chromosome set of Triatoma pintodiasi (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Description of the diploid chromosome set of Triatoma pintodiasi (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Description of the diploid chromosome set of Triatoma pintodiasi (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Differentiation between Triatoma arthurneivai and Triatoma wygodzinskyi (Hemiptera: Reduviidae: Triatominae) using cytotaxonomy”, vol. 15, p. -, 2016.
, “Differentiation between Triatoma arthurneivai and Triatoma wygodzinskyi (Hemiptera: Reduviidae: Triatominae) using cytotaxonomy”, vol. 15, p. -, 2016.
, “Insights into a hotspot in the Brasiliensis subcomplex (Hemiptera, Triatominae) by analysis of D2 domain of the nuclear gene 28S”, vol. 15, p. -, 2016.
, “Insights into a hotspot in the Brasiliensis subcomplex (Hemiptera, Triatominae) by analysis of D2 domain of the nuclear gene 28S”, vol. 15, p. -, 2016.
, “Insights into a hotspot in the Brasiliensis subcomplex (Hemiptera, Triatominae) by analysis of D2 domain of the nuclear gene 28S”, vol. 15, p. -, 2016.
, “New chromosomal evidence for the origin of Triatoma infestans populations from Brazil”, vol. 15, p. -, 2016.
, “New chromosomal evidence for the origin of Triatoma infestans populations from Brazil”, vol. 15, p. -, 2016.
, “New record and cytogenetic analysis of Psammolestes tertius Lent & Jurberg, 1965 (Hemiptera, Reduviidae, Triatominae) from Bahia State, Brazil”, vol. 15, p. -, 2016.
, “New record and cytogenetic analysis of Psammolestes tertius Lent & Jurberg, 1965 (Hemiptera, Reduviidae, Triatominae) from Bahia State, Brazil”, vol. 15, p. -, 2016.
, “Nucleolar-persistence phenomenon during spermatogenesis in genus Meccus (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Nucleolar-persistence phenomenon during spermatogenesis in genus Meccus (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Nucleolar-persistence phenomenon during spermatogenesis in genus Meccus (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Presence of chromatoid bodies in the Rhodnius genus detected by cytochemical analysis”, vol. 15, p. -, 2016.
, “Presence of chromatoid bodies in the Rhodnius genus detected by cytochemical analysis”, vol. 15, p. -, 2016.
, “Presence of chromatoid bodies in the Rhodnius genus detected by cytochemical analysis”, vol. 15, p. -, 2016.
, “Spermatogenesis in Nesotriatoma bruneri (Usinger 1944) (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Spermatogenesis in Nesotriatoma bruneri (Usinger 1944) (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Spermiotaxonomy of the tribe Rhodniini (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Spermiotaxonomy of the tribe Rhodniini (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Spermiotaxonomy of the tribe Rhodniini (Hemiptera, Triatominae)”, vol. 15, p. -, 2016.
, “Chromosomal evolution in the pallescens group (Hemiptera, Triatominae)”, vol. 14, pp. 12654-12659, 2015.
, “Diploid chromosome set of kissing bug Triatoma baratai (Hemiptera, Triatominae)”, vol. 14, pp. 1106-1110, 2015.
, “Entoepidemiology of Chagas disease in the Western region of the State of São Paulo from 2004 to 2008, and cytogenetic analysis in Rhodnius neglectus (Hemiptera, Triatominae)”, vol. 14, pp. 5775-5784, 2015.
, “First cytogenetic study of Cavernicola pilosa Barber, 1937 (Hemiptera, Triatominae)”, vol. 14, pp. 13889-13893, 2015.
, “Karyotype of Rhodnius montenegrensis (Hemiptera, Triatominae)”, vol. 14, pp. 222-226, 2015.
, “Spermatogenesis and nucleolar behavior in Triatoma vandae and Triatoma williami (Hemiptera, Triatominae)”, vol. 14, pp. 12145-12151, 2015.
, “Distribution of constitutive heterochromatin in species of triatomines with fragmentation of sex chromosomes X”, vol. 13, pp. 10279-10284, 2014.
, “Distribution of constitutive heterochromatin in Triatoma melanocephala (Hemiptera, Triatominae)”, vol. 13, pp. 7899-7903, 2014.
, “Nucleolar activity during larval development of Myrmeleon uniformis Navas, 1920 (Neuroptera, Myrmeleontidae)”, vol. 13, pp. 5154-5158, 2014.
, “Entoepidemiology of Chagas disease in northwest São Paulo and cytogenetic analysis of its main vector, Triatoma sordida (Hemiptera: Triatominae)”, vol. 12, pp. 5810-5819, 2013.
, “Spermatogenesis in Triatoma melanocephala (Hemiptera: Triatominae)”, vol. 12. pp. 4944-4947, 2013.
, “Karyotype and spermatogenesis in Triatoma lenti (Hemiptera: Triatominae), a potential Chagas vector”, vol. 11, pp. 4278-4284, 2012.
, Alevi KC, Mendonca PP, Pereira NP, Rosa JA, et al. (2012). Karyotype of Triatoma melanocephala Neiva and Pinto (1923). Does this species fit in the Brasiliensis subcomplex? Infect. Genet. Evol. 12: 1652-1653.
http://dx.doi.org/10.1016/j.meegid.2012.06.011
PMid:22760157
Azeredo-Oliveira MTV (1990). Estudo Citogenético em Túbulos de Malpighi, Glândulas Salivares e Testículos de Triatomíneos (Triatominae, Heteroptera). Master's thesis, IBILCE/UNESP, São José do Rio Preto.
Barth R (1956). Estudos anatômicos e histológicos sôbre a subfamília Triatominae (Heteroptera, Reduviidae). VI parte: Estudo comparativo sôbre a espermiocitogênese das espécies mais importantes. Mem. Inst. Oswaldo Cruz 54: 599-616.
http://dx.doi.org/10.1590/S0074-02761956000300009
PMid:13451161
Camargo M, Duque-Correa MA and Berrio A (2006). A micro-spreading improvement for spermatogenic chromosomes from Triatominae (Hemiptera-Reduviidae). Mem. Inst. Oswaldo Cruz 101: 339-340.
http://dx.doi.org/10.1590/S0074-02762006000300021
PMid:16862334
Carcavallo RU, Curto de Casas SI, Sherlock IA and Galíndez-Girón I (1999). Geographical Distribution and Alti- Latitudinal Dispersion. In: Atlas of Chagas Disease Vectors in the America (Carcavallo RU, Galíndez-Girón I, Jurberg J and Lent H, eds.). Editora Fiocruz, Rio de Janeiro, 747-792.
De Vaio ES, Grucci B, Castagnino AM and Franca ME (1985). Meiotic differences between three triatomine species (Hemiptera: Reduviidae). Genetica 67: 185-191.
http://dx.doi.org/10.1007/BF02424489
Juberg J (2003). Ferramentas usadas em taxonomia de Triatomíneos o uso múltiplo. Entomol. Vectores 10: 497-509.
Lent H and Wygodzinsky P (1979). Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vector of Chagas's disease. Bull. Am. Mus. Nat. Hist. 163: 123-520.
Monteiro FA, Escalante AA and Beard CB (2001). Molecular tools and triatomine systematics: a public health perspective. Trends Parasitol. 17: 344-347.
http://dx.doi.org/10.1016/S1471-4922(01)01921-3
Noireau F, Diosque P and Jansen AM (2009). Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet. Res. 40: 26.
http://dx.doi.org/10.1051/vetres/2009009
PMid:19250627 PMCid:2695024
Panzera F, Perez R, Hornos S, Panzera Y, et al. (1996). Chromosome numbers in the Triatominae (Hemiptera-Reduviidae): a review. Mem. Inst. Oswaldo Cruz 91: 515-518.
http://dx.doi.org/10.1590/S0074-02761996000400021
PMid:9070413
Panzera F, Perez R, Panzera Y, Ferrandis I, et al. (2010). Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae). Cytogenet. Genome Res. 128: 77-87.
http://dx.doi.org/10.1159/000298824
PMid:20407223
Pérez R, Panzera Y, Scafiezzo S, Mazzella MC, et al. (1992). Cytogenetics as a tool for triatomine species distinction (Hemiptera-Reduviidae). Mem. Inst. Oswaldo Cruz 87: 353-361.
http://dx.doi.org/10.1590/S0074-02761992000300004
PMid:1343644
Schofield CJ and Galvão C (2009). Classification, evolution, and species groups within the Triatominae. Acta Trop. 110: 88-100.
http://dx.doi.org/10.1016/j.actatropica.2009.01.010
PMid:19385053
Schreiber G and Pellegrino J (1950). Eteropicnosi di autosomi come possible meccanismo di speciazione. Sci. Genet. 3: 215-226.
PMid:15431074
Sherlock IA and Guitton N (1974). Fauna Triatominae do Estado da Bahia Brasil III - notas sobre ecótopos silvestres e o gênero Psammolestes. Mem. Inst. Oswaldo Cruz 72: 91-101.
Souza HV and Itoyama MM (2006). Diferentes sistemas cromossômicos de determinação do sexo em Heteroptera. Rev. UNORP 13: 80-87.
Tavares MG and Azeredo-Oliveira MTV (1997a). Cytogenetics studies on holocentric chromosomes of five species of triatomines (Heteroptera: Reduviidae). Cytobios 89: 51-61.
Tavares MG and Azeredo-Oliveira MTV (1997b). Pattern of nucleolar activity during spermatogenesis in triatomines (Heteroptera, Reduviidae) as analyzed by silver staining. Cytobios 89: 93-103.
Ueshima N (1966). Cytotaxonomy of the Triatominae (Reduviidae: Hemiptera). Chromosoma 18: 97-122.
http://dx.doi.org/10.1007/BF00326447
Ueshima N (1979). Hemiptera II: Heteroptera. In: Animal Cytogenetics (John B, ed.). Gebrüder Borntraeger, Berlim, 1-117.
“Nucleolar behavior during meiosis in four species of phyllostomid bats (Chiroptera, Mammalia)”, vol. 10, pp. 552-565, 2011.
, Abrams JM, White K, Fessler LI and Steller H (1993). Programmed cell death during Drosophila embryogenesis. Development 117: 29-43.
PMid:8223253
Andersen JS, Lam YW, Leung AK, Ong SE, et al. (2005). Nucleolar proteome dynamics. Nature 433: 77-83.
doi:10.1038/nature03207
PMid:15635413
Baker R, Maltbie M, Owen J, Hamilton M, et al. (1992). Reduced number of ribosomal sites in bats: evidence for a mechanism to contain genome size. J. Mammal. 73: 847-858.
doi:10.2307/1382206
Boisvert FM, van Koningsbruggen, Navascues J and Lamond AI (2007). The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8: 574-585.
doi:10.1038/nrm2184
PMid:17519961
Carmo-Fonseca M, Mendes-Soares L and Campos I (2000). To be or not to be in the nucleolus. Nat. Cell Biol. 2: E107-E112.
doi:10.1038/35014078
PMid:10854340
Cattani MV and Papeschi AG (2004). Nucleolus organizing regions and semi-persistent nucleolus during meiosis in Spartocera fusca (Thunberg) (Coreidae, Heteroptera). Hereditas 140: 105-111.
doi:10.1111/j.1601-5223.2004.01752.x
PMid:15061787
Costa LC, Azeredo-Oliveira MTV and Tartarotti E (2008). Spermatogenesis and nucleolar activity in Triatoma klugi (Triatomine, Heteroptera). Genet. Mol. Biol. 31: 438-444.
doi:10.1590/S1415-47572008000300008
Dimario PJ (2004). Cell and molecular biology of nucleolar assembly and disassembly. Int. Rev. Cytol. 239: 99-178.
doi:10.1016/S0074-7696(04)39003-0
Dundr M, Misteli T and Olson MO (2000). The dynamics of postmitotic reassembly of the nucleolus. J. Cell Biol. 150: 433-446.
doi:10.1083/jcb.150.3.433
PMid:10931858 PMCid:2175201
Gall JG (2001). A role for Cajal bodies in assembly of the nuclear transcription machinery. FEBS Lett. 498: 164-167.
doi:10.1016/S0014-5793(01)02461-9
Hernandez-Verdun D (2005). Nucleolus in the spotlight. Cell Cycle 4: 106-108.
doi:10.4161/cc.4.1.1355
PMid:15611637
Hernandez-Verdun D (2006a). Nucleolus: from structure to dynamics. Histochem. Cell Biol. 125: 127-137.
doi:10.1007/s00418-005-0046-4
PMid:16328431
Hernandez-Verdun D (2006b). The nucleolus: a model for the organization of nuclear functions. Histochem. Cell Biol. 126: 135-148.
doi:10.1007/s00418-006-0212-3
PMid:16835752
Hofgärtner FJ, Schmid M, Krone W, Zenzes MT, et al. (1979). Pattern of activity of nucleolus organizers during spermatogenesis in mammals as analyzed by silver-staining. Chromosoma 71: 197-216.
doi:10.1007/BF00292823
Kavalco KF and Pazza R (2004). A rapid alternative technique for obtaining silver-positive patterns in chromosomes. Genet. Mol. Biol. 27: 196-198.
doi:10.1590/S1415-47572004000200012
Kotaja N and Sassone-Corsi P (2007). The chromatoid body: a germ-cell-specific RNA-processing centre. Nat. Rev. Mol. Cell Biol. 8: 85-90.
doi:10.1038/nrm2081
PMid:17183363
Leung AK and Lamond AI (2003). The dynamics of the nucleolus. Crit. Rev. Eukaryot. Gene Expr. 13: 39-54.
doi:10.1615/CritRevEukaryotGeneExpr.v13.i1.40
PMid:12839096
Leung AK, Gerlich D, Miller G, Lyon C, et al. (2004). Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 166: 787-800.
doi:10.1083/jcb.200405013
PMid:15353547 PMCid:2172103
Louvet E, Junera HR, Le Panse S and Hernandez-Verdun D (2005). Dynamics and compartmentation of the nucleolar processing machinery. Exp. Cell Res. 304: 457-470.
doi:10.1016/j.yexcr.2004.11.018
PMid:15748891
Mitchell JR, Cheng J and Collins K (1999). A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3’ end. Mol. Cell Biol. 19: 567-576.
PMid:9858580 PMCid:83914
Morielle E and Varella-Garcia M (1988). Variability of nucleolus organizer regions in phyllostomid bats. Rev. Bras. Genet. 11: 853-871.
Morielle-Souza A and de Azeredo-Oliveira MT (2008). Study of the nucleolar cycle and ribosomal RNA distribution during meiosis in triatomines (Triatominae, Heteroptera). Micron 39: 1020-1026.
doi:10.1016/j.micron.2007.09.002
PMid:17976997
Morielle-Versute E, Varella-Garcia M and Taddei VA (1996). Karyotypic patterns of seven species of molossid bats (Molossidae, Chiroptera). Cytogenet. Cell Genet. 72: 26-33.
doi:10.1159/000134154
Olson MO and Dundr M (2005). The moving parts of the nucleolus. Histochem. Cell Biol. 123: 203-216.
doi:10.1007/s00418-005-0754-9
PMid:15742198
Olson MO, Dundr M and Szebeni A (2000). The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 10: 189-196.
doi:10.1016/S0962-8924(00)01738-4
Paniagua R, Nistal M, Amat P and Rodriguez MC (1986). Ultrastructural observations on nucleoli and related structures during human spermatogenesis. Anat. Embryol. 174: 301-306.
doi:10.1007/BF00698780
PMid:3766986
Peruquetti RL, Assis IM, Taboga SR and de Azeredo-Oliveira MT (2008). Meiotic nucleolar cycle and chromatoid body formation during the rat (Rattus novergicus) and mouse (Mus musculus) spermiogenesis. Micron 39: 419-425.
doi:10.1016/j.micron.2007.02.009
PMid:17512745
Peruquetti RL, Taboga SR and de Azeredo-Oliveira MT (2010). Characterization of Mongolian gerbil chromatoid bodies and their correlation with nucleolar cycle during spermatogenesis. Reprod. Domest. Anim. 45: 399-406.
doi:10.1111/j.1439-0531.2008.01204.x
PMid:19144012
Politz JC, Yarovoi S, Kilroy SM, Gowda K, et al. (2000). Signal recognition particle components in the nucleolus. Proc. Natl. Acad. Sci. U. S. A. 97: 55-60.
doi:10.1073/pnas.97.1.55
Politz JC, Tuft RA and Pederson T (2003). Diffusion-based transport of nascent ribosomes in the nucleus. Mol. Biol. Cell 14: 4805-4812.
doi:10.1091/mbc.E03-06-0395
PMid:12960421 PMCid:284785
Raška I, Koberna K, Malinsky J, Fidlerova H, et al. (2004). The nucleolus and transcription of ribosomal genes. Biol. Cell 96: 579-594.
doi:10.1016/j.biolcel.2004.04.015
PMid:15519693
Raška I, Shaw PJ and Cmarko D (2006a). Structure and function of the nucleolus in the spotlight. Curr. Opin. Cell Biol. 18: 325-334.
doi:10.1016/j.ceb.2006.04.008
PMid:16687244
Raška I, Shaw PJ and Cmarko D (2006b). New insights into nucleolar architecture and activity. Int. Rev. Cytol. 255: 177-235.
doi:10.1016/S0074-7696(06)55004-1
Savino TM, Gebrane-Younes J, De Mey J, Sibarita JB, et al. (2001). Nucleolar assembly of the rRNA processing machinery in living cells. J. Cell Biol. 153: 1097-1110.
doi:10.1083/jcb.153.5.1097
PMid:11381093 PMCid:2174343
Schmid M, Löser C, Schmidtke J and Engel W (1982). Evolutionary conservation of a common pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma 86: 149-179.
doi:10.1007/BF00288674
PMid:7140472
Sirri V, Urcuqui-Inchima S, Roussel P and Hernandez-Verdun D (2008). Nucleolus: the fascinating nuclear body. Histochem. Cell Biol. 129: 13-31.
doi:10.1007/s00418-007-0359-6
PMid:18046571 PMCid:2137947
Souza MJ and Araújo MCP (1990). Conservative pattern of the G-bands and diversity of C-banding patterns and NORs in Stenodermatinae (Chiroptera-Phyllostomatidae). Rev. Bras. Genet. 13: 255-268.
Viegas-Péquignot E (1992). In situ Hybridization to Chromosomes with Biotinylated Probes. In: In situ Hybridization: A Practical Approach (Willernson D, ed.). Oxford University Press and IRL Press, Oxford, 137-158.
Visintin R and Amon A (2000). The nucleolus: the magician’s hat for cell cycle tricks. Curr. Opin. Cell Biol. 12: 752.
doi:10.1016/S0955-0674(00)00165-4
Volleth M (1987). Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet. Cell Genet. 44: 186-197.
doi:10.1159/000132371
“Simple method for culture of peripheral blood lymphocytes of Testudinidae”, vol. 10, pp. 3020-3025, 2011.
, Benirschke RJ, Quinn AD and Sekulovich RE (1976). Chromosomal studies in Geochelone (Testudinidae-Reptilia). Chromosome 12: 14-16.
Bickham JW (1975). A cytosystematic study of turtles in the genera Clemmys, Mauremys and Sacalia. Herpetologica 31: 198-204.
Bickham JW and Baker RJ (1976). Chromosome homology and evolution of emydid turtles. Chromosoma 54: 201-219.
http://dx.doi.org/10.1007/BF00293451
PMid:1248339
Bickham JW and Carr JL (1980). The karyotype and chromosomal banding patterns of the green turtle (Chelonia mydas). Copeia 540-543.
http://dx.doi.org/10.2307/1444535
Bickham JW and Carr JL (1983). Taxonomy and phylogeny of the higher categories of cryptodiran turtles based on a cladistic analysis of chromosomal data. Copeia 4: 918-932.
http://dx.doi.org/10.2307/1445093
Ciofi C, Milinkovitch MC, Gibbs JP, Caccone A, et al. (2002). Microsatellite analysis of genetic divergence among populations of giant Galapagos tortoises. Mol. Ecol. 11: 2265-2283.
http://dx.doi.org/10.1046/j.1365-294X.2002.01617.x
Forbes WC Jr (1996). A Cytological Study of the Chelonia, Unpublished PhD Dissertation. University Connecticut, Storrs.
Goldstein S and Lin CC (1972). Somatic cell hybrids between cultured fibroblasts from the Galapagos tortoise and the golden hamster. Exp. Cell Res. 73: 266-269.
http://dx.doi.org/10.1016/0014-4827(72)90134-6
Gorman GC (1973). The Chromosomes of the Reptilia, a Cytotaxonomic Interpretation. In: Cytotaxonomy of Vertebrate Evolution (Chiarelli AB and Capanna E, eds.). Academic Press, London, 349-424.
IUCN (2004). Red List of Threatened Species. Available at [http://www.iucnredlist.org]. Accessed December 15, 2010.
Kamesaki N (1989). Karyotypes of the loggerhead turtle, Caretta caretta, from Japan. Zool. Sci. 6: 421-422.
Kamesaki N (1990). Karyotype of the Haswkbill Turtle, Eretmochelys imbricata, from Japan, with notes on a method for preparation of chromosomes from liver cells. Jpn. J. Herpetol. 13: 111-113.
Killebrew FC (1975). Mitotic chromosomes of turtles: I. the Pelomedusidae. J. Herpetol. 9: 281-285.
http://dx.doi.org/10.2307/1563192
Maecha S (1998). Caracterización Citogenética de Rhinoclemmys diademata (Mertens, 1954) (Testudina: Emididae). Trabajo de Grado, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá.
Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, et al. (2005). Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res. 13: 601-615.
http://dx.doi.org/10.1007/s10577-005-0986-5
PMid:16170625
Medrano LM, Dorizzi F, Romblot C and Pieau C (1987). Karyotype of the sea turtle Demochelys coriacea (Vandelli, 1761). Amphibia-Reptilia 8: 171-178.
http://dx.doi.org/10.1163/156853887X00432
Noleto RB, Kantek DLZ and Swarça AC (2006). Karyotypic characterization of Hydromedusa tectifera (Testudines, Pleurodira) from the upper Iguaçu River in the Brazilian state of Paraná. Genet. Mol. Biol. 29: 263-266.
http://dx.doi.org/10.1590/S1415-47572006000200011
Ortiz M and Rodríguez P (2003). Estudio Citogenético de la Tortuga “Sabanera” (Podocnemis vogli. Müler, 1953) (Testudinata: Podocnemidae). Trabajo de Grado, Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Bogotá.
Rohilla MS, Rao RJ and Tiwari PK (2006). Use of peripheral blood lymphocyte culture in the karyological analysis of Indian freshwater turtles, Lissemys punctata and Geoclemys hamiltoni. Curr. Sci. 90: 1130-1134.
Sampaio MM, Barros RM, Ayres M and Cunha OR (1971). A karyological study of two species of tortoises from the Amazon Region of Brazil. Cytologia 36: 199-204.
http://dx.doi.org/10.1508/cytologia.36.199
PMid:5105798
Silva TL, Silva MIA, Venancio LPR, Zago CES, et al. (2011). Blood sampling in Testudinidae and Chelidae. Herpetol. Rev. (in press).
Singh L, Sharma T and Ray-Chaudhuri SP (1970). Chromosome numbers and sex chromosomes in few Indian species of amphibia and reptiles. Chromosome Newsl. 11: 91-94.
Ulsh BA, Congdon JD, Hinton TG, Whicker FW, et al. (2000a). Culture methods for turtle lymphocytes. Methods Cell Sci. 22: 285-297.
http://dx.doi.org/10.1023/A:1017559301372
PMid:11549941
Ulsh BA, Muhlmann-Diaz MC, Whicker FW, Hinton TG, et al. (2000b). Chromosome translocations in turtles: a biomarker in a sentinel animal for ecological dosimetry. Radiat. Res. 153: 752-759.
http://dx.doi.org/10.1667/0033-7587(2000)153[0752:CTITAB]2.0.CO;2
“Expression of acid phosphatase in the seminiferous epithelium of vertebrates”, vol. 9, pp. 620-628, 2010.
, Anderson WA (1968). Cytochemistry of sea urchin gametes. 3. Acid and alkaline phosphatase activity of spermatozoa and fertilization. J. Ultrastruct. Res. 25: 1-14.
http://dx.doi.org/10.1016/S0022-5320(68)80055-3
Anhê AC, Lima-Oliveira AP and Azeredo-Oliveira MT (2007). Acid phosphatase activity distribution in salivary glands of triatomines (Heteroptera, Reduviidae, Triatominae). Genet. Mol. Res. 6: 197-205.
PMid:17469069
Baccetti B, Bigliardi E, Burrini AG and Rosati F (1971). Histochemical observation on the insect sperm cell by electron microscope. J. Ultrastruct. Res. 37: 248-249.
Baccetti B, Burrini AG, Dallai R, Giusti F, et al. (1973). Structure and function in the spermatozoon of Tenebrio molitor (the spermatozoon of Arthropoda. XX). J. Mechanochem. Cell Motil. 2: 149-161.
PMid:4132414
Báo SN and Dolder H (1990). Ultrastructural localization of acid phosphatase in spermatic cells of Ceratitis capitata (Diptera). Histochemistry 93: 439-442.
http://dx.doi.org/10.1007/BF00315864
PMid:2323959
Báo SN, Quagio-Grassiotto I and Dolder H (1989). Acrosome formation in Ceratitis capitata (Diptera, Tephritidae). Cytobios 58: 93-100.
PMid:2805814
Blum MS (1970). Invertebrate Testis. In: The Testis (Johanson AD, Gomes WR and Vandemark NL, eds.). Academic Press, London, New York, 393-438.
Bull H, Murray PG, Thomas D, Fraser AM, et al. (2002). Acid phosphatases. Mol. Pathol. 55: 65-72.
http://dx.doi.org/10.1136/mp.55.2.65
PMid:11950951 PMCid:1187150
Cerri LMO, Ajzen S, Arap S and Cerri GG (1999). Ultra-sonografia da Próstata. Sarvier, São Paulo.
Chemes H (1986). The phagocytic function of Sertoli cells: a morphological, biochemical, and endocrinological study of lysosomes and acid phosphatase localization in the rat testis. Endocrinology 119: 1673-1681.
http://dx.doi.org/10.1210/endo-119-4-1673
PMid:3757907
Committee on Care and Use of Laboratory Animals (1980). Guide for the Care and Use of Laboratory Animals. National Research Council, Publication No. 96-03.
Custodio AM, Goes RM and Taboga SR (2004). Acid phosphatase activity in gerbil prostate: comparative study in male and female during postnatal development. Cell Biol. Int. 28: 335-344.
http://dx.doi.org/10.1016/j.cellbi.2003.12.008
PMid:15193277
Deltour R, Fransolet S and Loppes R (1981). Inorganic phosphate accumulation and phosphatase activity in the nucleus of maize embryo root cells. J. Cell Sci. 47: 77-89.
PMid:6267088
Fernandes AP (1999). Ultrastructural localization of enzymatic activity during spermiogenesis in two phytophagous bugs (Hemiptera: Pentatomidae). Tissue Cell 31: 349-356.
http://dx.doi.org/10.1054/tice.1999.0035
PMid:18627862
Gömöri G (1950). An improved histochemical technique for acid phosphatase. Biotech. Histochem. 25: 81-85.
http://dx.doi.org/10.3109/10520295009110962
Grimalt PE, Castro LP, Mayorga LS and Bertini F (1995). Epididymal acid hydrolases in the annual reproductive cycle of two lizards. Comp. Biochem. Physiol. A Comp. Physiol. 112: 321-325.
Hurk R, Van Den Meek J and Peute J (1974). Ultrastructural study of the testis of the black molly (Mollienisia latipinna) I. The intratesticular efferent duct system. Proceedings of the Kon. Ned. Akad. Wetensch. Serie C 77, 460-469. Endocrinology 77: 5.
Hurkadli HK, Hooli MA and Nadkarni VB (1985). Acid phosphate activity in the testis of the Eri silkworm: Philosamia ricini (Hutt.) - A histochemical study. Curr. Sci. 54: 530-532.
Jones HE and Bowen ID (1993). Acid phosphatase activity in the larval salivary glands of developing Drosophila melanogaster. Cell Biol. Int. 17: 305-315.
http://dx.doi.org/10.1006/cbir.1993.1066
PMid:8513298
Niemi M and Kormano M (1965). Cyclical changes in and significance of lipids and acid phosphatase activity in the seminiferous tubules of the rat testis. Anat. Rec. 151: 159-170.
http://dx.doi.org/10.1002/ar.1091510207
PMid:14278710
Peruquetti RL (2009). Caracterização do Ciclo Nucleolar e da Formação do Corpo Cromatóide na Espermatogênese de Alguns Vertebrados. Doctoral thesis, Instituto de Biociências, Letras e Ciências Exatas UNESP/IBILCE, São José do Rio Preto.
Porawski M, Wassermann GF and Achaval M (2004). Localization of acid phosphatase activity in the testis of two teleostean species (Oreochromis niloticus and Odonthestes perugiae). Braz. J. Biol. 64: 853-858.
http://dx.doi.org/10.1590/S1519-69842004000500015
PMid:15744426
Ribeiro MG and Lima SR (2000). Iniciação às Técnicas de Preparação de Material para Estudo e Pesquisa em Morfologia. SEGRAC Editora e Gráfica Limitada, Belo Horizonte.
Saftig P, Hartmann D, Lullmann-Rauch R, Wolff J, et al. (1997). Mice deficient in lysosomal acid phosphatase develop lysosomal storage in the kidney and central nervous system. J. Biol. Chem. 272: 18628-18635.
http://dx.doi.org/10.1074/jbc.272.30.18628
PMid:9228031
Sánchez-Pina MA, Rodriguez-Garcia MI and Risueno MC (1980). Localization of the acid phosphatasic activity in plant cell nucleoli. Cell Biol. Int. Rep. 4: 93-104.
http://dx.doi.org/10.1016/0309-1651(80)90014-4
Siebert G (1966). Nucleolar enzymes of isolated rat liver nucleoli. Natl. Cancer Inst. Monogr. 23: 285-293.
PMid:4225580
Soriano RZ and Love R (1971). Electron microscopic demonstration of acid phosphatase in nucleoli and nucleoplasm. Exp. Cell. Res. 65: 467-470.
http://dx.doi.org/10.1016/0014-4827(71)90029-2
Sousa M, Moradas FP, Amorim A and Azevedo C (1988). Starfish acrosomal acid phosphatase: a cytochemical and biochemical study. Biol. Cell 63: 101-104.
PMid:3191293
Stenberg SS (1996). Histology for Pathologists. Lippincott-Raven Publishers, Hong Kong.
Suter A, Everts V, Boyde A, Jones SJ, et al. (2001). Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 128: 4899-4910.
PMid:11731469
Yousef GM, Diamandis M, Jung K and Diamandis EP (2001). Molecular cloning of a novel human acid phosphatase gene (ACPT) that is highly expressed in the testis. Genomics 74: 385-395.
http://dx.doi.org/10.1006/geno.2001.6556
PMid:11414767
Zaviacic M (1999). The Human Female Prostate from Vestigial Skene's Paraurethral Glands and Ducts to Woman's Functional Prostate. SAP-Slovak Academic Press, Bratislava.
“Cytogenetic analysis in the spermatogenesis of Triatoma melanosoma (Reduviidae; Heteroptera)”, vol. 7, pp. 326-335, 2008.
, “Programmed cell death in salivary glands of Drosophila arizonae and Drosophila mulleri”, vol. 7, pp. 476-486, 2008.
, , ,