Publications

Found 7 results
Filters: Author is B. Chen  [Clear All Filters]
2012
J. Xu, Wang, J., and Chen, B., SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population, vol. 11, pp. 1592-1598, 2012.
Boutayeb A and Boutayeb S (2005). The burden of non communicable diseases in developing countries. Int. J. Equity Health 4: 2. http://dx.doi.org/10.1186/1475-9276-4-2 PMid:15651987 PMCid:546417   Cauchi S, Proenca C, Choquet H, Gaget S, et al. (2008). Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86: 341-348. http://dx.doi.org/10.1007/s00109-007-0295-x PMid:18210030   Chausmer AB (1998). Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17: 109-115. PMid:9550453   Chimienti F, Devergnas S, Favier A and Seve M (2004). Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53: 2330-2337. http://dx.doi.org/10.2337/diabetes.53.9.2330 PMid:15331542   Crawford DC and Nickerson DA (2005). Definition and clinical importance of haplotypes. Annu. Rev. Med. 56: 303-320. http://dx.doi.org/10.1146/annurev.med.56.082103.104540 PMid:15660514   Das SK and Elbein SC (2006). The genetic basis of type 2 diabetes. Cell Sci. 2: 100-131.   Frayling TM (2007a). Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8: 657-662. http://dx.doi.org/10.1038/nrg2178 PMid:17703236   Frayling TM (2007b). A new era in finding type 2 diabetes genes - the unusual suspects. Diabet. Med. 24: 696-701. http://dx.doi.org/10.1111/j.1464-5491.2007.02172.x PMid:17561964   Horikoshi M, Hara K, Ito C, Shojima N, et al. (2007). Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50: 2461-2466. http://dx.doi.org/10.1007/s00125-007-0827-5 PMid:17928989   Kirchhoff K, Machicao F, Haupt A, Schafer SA, et al. (2008). Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601. http://dx.doi.org/10.1007/s00125-008-0926-y PMid:18264689   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 19: 519-523. http://dx.doi.org/10.1038/cr.2009.33 PMid:19290020   Livak KJ, Marmaro J and Todd JA (1995). Towards fully automated genome-wide polymorphism screening. Nat. Genet. 9: 341-342. http://dx.doi.org/10.1038/ng0495-341 PMid:7795635   MacDonald PE and Rorsman P (2007). The ins and outs of secretion from pancreatic beta-cells: control of single-vesicle exo- and endocytosis. Physiology 22: 113-121. http://dx.doi.org/10.1152/physiol.00047.2006 PMid:17420302   Morris RW and Kaplan NL (2002). On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet. Epidemiol. 23: 221-233. http://dx.doi.org/10.1002/gepi.10200 PMid:12384975   Omori S, Tanaka Y, Takahashi A, Hirose H, et al. (2008). Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57: 791-795. http://dx.doi.org/10.2337/db07-0979 PMid:18162508   Owen KR and McCarthy MI (2007). Genetics of type 2 diabetes. Curr. Opin. Genet. Dev. 17: 239-244. http://dx.doi.org/10.1016/j.gde.2007.04.003 PMid:17466512   Palmiter RD and Huang L (2004). Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 447: 744-751. http://dx.doi.org/10.1007/s00424-003-1070-7 PMid:12748859   Sano M, Kuroi N, Nakayama T, Sato N, et al. (2005). Association study of calcitonin-receptor-like receptor gene in essential hypertension. Am. J. Hypertens. 18: 403-408. http://dx.doi.org/10.1016/j.amjhyper.2004.10.016 PMid:15797661   Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336. http://dx.doi.org/10.1126/science.1142358 PMid:17463246   Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345. http://dx.doi.org/10.1126/science.1142382 PMid:17463248 PMCid:3214617   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Sladek R, Rocheleau G, Rung J, Dina C, et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881-885. http://dx.doi.org/10.1038/nature05616 PMid:17293876   Staiger H, Machicao F, Stefan N, Tschritter O, et al. (2007). Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS One 2: e832. http://dx.doi.org/10.1371/journal.pone.0000832 PMid:17786204 PMCid:1952072   Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39: 770-775. http://dx.doi.org/10.1038/ng2043 PMid:17460697   Xiang X, Ma YT, Fu ZY, Yang YN, et al. (2009). Haplotype analysis of the CYP8A1 gene associated with myocardial infarction. Clin. Appl. Thromb. Hemost. 15: 574-580. http://dx.doi.org/10.1177/1076029608329581 PMid:19147528   Zeggini E (2007). A new era for type 2 diabetes genetics. Diabet. Med. 24: 1181-1186. http://dx.doi.org/10.1111/j.1464-5491.2007.02274.x PMid:17897328 PMCid:2121132   Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341. http://dx.doi.org/10.1126/science.1142364 PMid:17463249