Found 7 results
Filters: Author is M.A. Mahmoud  [Clear All Filters]
M. A. Mahmoud, Al-Othman, M. R., -El-Aziz, A., Metwaly, H. A., and Mohamed, H. A., Expression of genes encoding cellulolytic enzymes in some Aspergillus species, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe authors would like to extend their sincere appreciation to the Deanship of Scientific Research at king Saud University for its funding this research group (#RG-269). REFERENCESAl-Sheikh H, Watson AJ, Lacey GA, Punt PJ, et al (2004). Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol. Microbiol. 53: 1731-1742. Aro N, Pakula T, Penttilä M, et al (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739. Bak JS, et al (2015). Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium. MicrobiologyOpen 4: 151-166. Caddick MX, Jones MG, van Tonder JM, Le Cordier H, et al (2006). Opposing signals differentially regulate transcript stability in Aspergillus nidulans. Mol. Microbiol. 62: 509-519. Dutt D, Kumar A, et al (2014). Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (AT-2) and Aspergillus niger (AT-3) and its impact on stickies and ink particle size of sorted office paper. Cellul. Chem. Technol. 48: 285-298. Gao J, Weng H, Zhu D, Yuan M, et al (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99: 7623-7629. Gehlot P, Purohit DK, Singh SK, et al (2011). Molecular diagnostics of human pathogenic Aspergillus species. Indian J. Biotechnol. 10: 207-211. Ghigo JM, et al (2003). Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res. Microbiol. 154: 1-8. Gomathi D, Muthulakshmi C, Guru KD, Ravikumar G, et al (2012). Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pac. J. Trop. Biomed. •••: S67-S73. Gutiérrez-Correa M, Villena GK, et al (2003). Surface adhesion fermentation: a new fermentation category. Rev. Peru. Biol. 10: 113-124. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, et al (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol. Phylogenet. Evol. 42: 543-555. Jahromi MF, Liang JB, Rosfarizan M, Goh YM, et al (2011). Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr. J. Biotechnol. 10: 4428-4435. Kuhad RC, Gupta R, Singh A, et al (2011). Microbial cellulases and their industrial applications. Enzyme Res. 2011: 280696. Mahmood N, Mariyah A, Ishafaq A, Shahida A, et al (2014). Molecular expression profile of different cellulolytic enzyme genes in Aspergillus niger in response to UV radiation and chemical mutagenesis. Cellul. Chem. Technol. 48: 529-533. Mahmoud MA, Ali HM, El-Aziz ARM, Al-Othman MR, et al (2014). Molecular characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates collected from corn grains. Genet. Mol. Res. 13: 9352-9370. Marui J, Kitamoto N, Kato M, Kobayashi T, et al (2002). Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes in Aspergillus oryzae. FEBS Lett. 528: 279-282. Nazir A, Soni R, Saini HS, Kaur A, et al (2010). Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Appl. Biochem. Biotechnol. 162: 538-547. Ogawa M, Kobayashi T, Koyama Y, et al (2013). ManR, a transcriptional regulator of the β-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 77: 426-429. Osherov N, May GS, et al (2001). The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 199: 153-160. Osuna Y, Sandoval J, Saade H, López RG, et al (2015). Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38: 1437-1445. Parameswaran B, Palkhiwala P, Gaikaiwari R, Nampoothiri K, et al (2013). Industrial enzymes-present status & future perspective for India. J. Sci. Ind. Res. 72: 271-286. Rabinovich ML, Melnik MS, Bolobova AV, et al (2002). Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial cellulases. Appl. Biochem. Microbiol. 38: 305-322. Raper KB and Fennell DI (1965). Aspergillus section Flavi In: The Genus of Aspergillus (Raper KB and Fennell DI, eds.). Williams & Wilkins Company, Baltimore, [538]. Reddy GPK, Narasimha G, Kumar KD, Ramanjaneyulu G, et al (2015). Cellulase production by Aspergillus niger on different natural lignocellulosic substrates. Int. J. Curr. Microbiol. Appl. Sci. 4: 835-845. Renge V, Khedkar SV, Nandurkar NR, et al (2012). Enzyme synthesis by fermentation method: a review. Sci. Rev. Chem. Commun. 2: 585-590. Saitou N, Nei M, et al (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Shahriarinour M, Wahab MNA, Mohamad R, Mustafa S, et al (2011). Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. Afr. J. Biotechnol. 10: 7459-7467. Shivanna GB, Venkateswaran G, et al (2014). Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci. World J. 2014: 392615. Sørensen A, Lübeck M, Lübeck PS, Ahring BK, et al (2013). Fungal Beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3: 612-631. Sridevi A, Narasimha G, Ramanjaneyulu G, Dileepkumar K, et al. (2015) Saccharification of pretreated sawdust by Aspergillus niger cellulase. 3 Biotech. 5: 883-892. Stricker AR, Mach RL, de Graaff LH, et al (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78: 211-220. Todaka N, Inoue T, Saita K, Ohkuma M, et al (2010). Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One 5: e8636. Utharalakshmi N, Kumar AG, Narendrakumar G, et al (2014). Optimization of cellulase producing Aspergillus flavus SB4 by solid state fermentation using rice bran. J. Pure Appl. Microbiol. 8: 713-719. Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M, et al (2009). Differential gene expression of some lignocellulolytic enzymes in Aspergillus niger biofilms. Rev. Peru. Biol. 15: 97-102. Villena GK, Gutiérrez-Correa M, et al (2006). Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett. Appl. Microbiol. 43: 262-268. Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomeza S, et al (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13: 157-167. Ward OP, Qin WM, Dhanjoon J, Ye J, et al (2006). Physiology and biotechnology of Aspergillus. Adv. Appl. Microbiol. 58: 1-75. Watanabe H, Tokuda G, et al (2001). Animal cellulases. Cell. Mol. Life Sci. 58: 1167-1178. Zhou M, Huang ZQ, Zhou B, Luo YL, et al (2015). Construction and expression of two-copy engineered yeast of feruloyl esterase. Electron. J. Biotechnol. 18: 338-342.  
M. A. Mahmoud, El-Samawaty, A. M. A., Yassin, M. A., El-Aziz, A. R. M. Abd, Mahmoud, M. A., El-Samawaty, A. M. A., Yassin, M. A., and El-Aziz, A. R. M. Abd, Genetic diversity analysis of Aspergillus flavus isolates from plants and air by ISSR markers, vol. 15, p. -, 2016.
M. A. Mahmoud, El-Samawaty, A. M. A., Yassin, M. A., El-Aziz, A. R. M. Abd, Mahmoud, M. A., El-Samawaty, A. M. A., Yassin, M. A., and El-Aziz, A. R. M. Abd, Genetic diversity analysis of Aspergillus flavus isolates from plants and air by ISSR markers, vol. 15, p. -, 2016.
M. A. Mahmoud, Al-Sohaibani, S. A., Abdelbacki, A. M. M., Al-Othman, M. R., Aziz, A. R. M. Abd El-, Kasem, K. K., Mikhail, M. S., Sabet, K. K., Omar, M. R., and Hussein, E. M., Molecular characterization of the pathogenic plant fungus Rhizoctonia solani (Ceratobasidiaceae) isolated from Egypt based on protein and PCR-RAPD profiles, vol. 11, pp. 3585-3600, 2012.
Abdel-Sattar MA, Aly AA and Omar MR (2008). Use of pathogenicity and protein electrophoresis to distinguish isolates of Macrophomina phaseolina pathogenic on cotton. J. Agric. Sci. Mansoura Univ. 33: 207-217.   Adams GC (1988). Thanatephorus cucumeris (Rhizoctonia solani), a species complex of wide host range. Adv. Plant Pathol. 6: 535-552.   Aqil T and Batson EW (1999). Evaluation of radical assay for screening cotton genotypes for resistance to the pathogens of seedling disease complex. Pak. J. Phyto. 11: 11-16.   Asran AA (2001). Studies on Cotton Rhizosphere Microorganisms and Their Role as Bio-Control Agents for Root Rot Diseases. PhD thesis, Cairo University, Cairo.   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   Carling DE, Baird RE, Gitaitis RD, Brainard KA, et al. (2002). Characterization of AG-13, a Newly Reported Anastomosis Group of Rhizoctonia solani. Phytopathology 92: 893-899. PMid:18942969   Duncan S, Barton JE and O'Brien PA (1993). Analysis of variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycol. Res. 97: 1075-1082.   El-Akkad SAF (1997). Studies on anastomosis groups of Rhizoctonia solani. PhD thesis, Cairo University, Cairo.   El-Samawaty AMA, Asran AA, Omar MR and Abd-Elsalam KA (2008). Anastomosis groups, pathogenicity, and cellulase production of Rhizoctonia solani from cotton. Pest Technol. 1: 117-124.   Fulton ND, Awaddle B and Thomas JA (1956). Influence of planting date on fungi isolated from diseased cotton seedlings. Plant Dis. Rep. 40: 556-558.   Guo JR, Schnieder F, Abd-Elsalam KA and Verreet JA (2005). Rapid and efficient extraction of genomic DNA from different phytopathogenic fungi using DNAzol reagent. Biotechnol. Lett. 27: 3-6. PMid:15685411   Guseva NN and Gromova BB (1982). Chemical and Biochemical Methods for Studying Plant Immunity. All Union Institute of Plant Protection, Leningrad.   Hussein EM, Allam AD, Aly AA, Amein AM, et al. (2000). Separation by protein electrophoresis of Rhizoctonia spp. isolated from cotton seedlings. J. Agric. Sci. Mansoura Univ. 25: 4035-4046.   Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. PMid:5432063   Mohammadi M, Banihashemi M, Hedjaroude GA and Rahimian H (2003). Genetic diversity among Iranian isolates of Rhizoctonia solani Kühn anastomosis group1 subgroups based on isozyme analysis and total soluble protein pattern. J. Phyto. 151: 162-170.   Monga D and Sheo-Raj (1994). Cultural and pathogenic variations in the isolates of Rhizoctonia species causing root rot of cotton. Indian Phytopathol. 47: 403-407.   Monga D, Ratore SS and Mayee CD (2004). Differentation of isolates of cotton root rot pathogens Rhizoctonia solani and R. bataticola using cultural characteristics, pathogenicity and RAPD markers. J. Plant Biochem. Biotechnol. 13: 135-139.   Ogoshi A (1972). Grouping of Rhizoctonia solani Kühn with hyphal anastomosis. Ann. Phytopathol. Soc. Japan 38: 117-122.   Ortiz-Herrera M, Geronimo-Gallegos A, Cuevas-Schacht F, Perez-Fernandez L, et al. (2004). RAPD-PCR characterization of Pseudomonas aeruginosa strains obtained from cystic fibrosis patients. Salud. Publica Mex. 46: 149-157. PMid:15176577   Ruiz RA, Vacek DC, Parker PE and Wendel LE (2000). Using Randomly Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR) to Match Natural Enemies to Their Host Plant. Proceedings of the X International Symposium on Biological Control of Weeds 4-14 July 1999 (Spencer NR, ed.). Montana State University, Bozeman, 289-293.   Rush CM, Carling ED, Harveson RM and Mathieson JT (1994). Prevalence and pathogenicity of anastomosis groups of Rhizoctonia solani from wheat and sugar beet in Texas. Plant Dis. 78: 349-352.   Sammons DW, Adams LD and Nishizawa EE (1981). Ultrasensitive silver-based colour staining of polypeptides in polyacrylamide gels. Electrophoresis 2: 135-141.   Sneath PHA and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.   Sneh B, Jabaji-Hare S, Neate S and Dijst G (1996). Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, Dordrecht.   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. PMid:1979162 PMCid:332606
A. A. Alatar, Mahmoud, M. A., Al-Sohaibani, S. A., and Abd-Elsalam, K. A., Simple and rapid protocol for the isolation of PCR-amplifiable DNA from medicinal plants, vol. 11, pp. 348-354, 2012.
Abd-Elsalam K, Bahkali AH, Moslem M, De Wit PJ, et al. (2011). Detection of Mycosphaerella graminicola in wheat leaves by a microsatellite dinucleotide specific-primer. Int. J. Mol. Sci. 12: 682-693. PMid:21340008    PMCid:3039974 Ahmed I, Islam M, Arshad W, Mannan A, et al. (2009). High-quality plant DNA extraction for PCR: an easy approach. J. Appl. Genet. 50: 105-107. PMid:19433907 Amani J, Kazemi R, Abbasi AR and Salmanian AH (2011). A simple and rapid leaf genomic DNA extraction method for polymerase chain reaction analysis. Iran. J. Biotechnol. 9: 69-71. Calixto JB (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 33: 179-189. PMid:10657057 Chandra A and Tewari S (2007). Isolation of genomic DNA from Stylo species without liquid nitrogen suitable for RAPD and STS analyses. Cytologia 72: 287-293. Jena RC, Samal KC and Das BK (2010). Optimization of DNA isolation and PCR protocol for RAPD analysis of Mangifera indica L. J. Agric. Technol. 6: 559-571. Križman M, Jakše J, Baričevič D, Javornik B, et al. (2006). Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric. Slov. 87: 427-433. Manna B, Gambhir A and Ghosh P (1996). Production and rheological characteristics of the microbial polysaccharide gellan. Lett. Appl. Microbiol. 23: 141-145. Matasyoh LG, Wachira FN, Kinyua MG, Muigai AWT, et al. (2008). Leaf storage conditions and genomic DNA isolation efficiency in Ocimum gratissimum L. from Kenya. Afr. J. Biotechnol. 7: 557-564. McCouch SR, Teytelman L, Xu Y, Lobos KB, et al. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199-207. PMid:12597276 Melo SC, Pungartnik C, Cascardo JC and Brendel M (2006). Rapid and efficient protocol for DNA extraction and molecular identification of the basidiomycete Crinipellis perniciosa. Genet. Mol. Res. 5: 851-855. PMid:17183493 Mishra MK, Rani NS, Ram AS, Sreenath HL, et al. (2008). A simple method of DNA extraction from coffee seeds suitable for PCR analysis. Afr. J. Biotechnol. 7: 409-413. Moslem MA, Bahkali AH, Abd-Elsalam KA and Wit PJ (2010). An efficient method for DNA extraction from Cladosporioid fungi. Genet. Mol. Res. 9: 2283-2291. PMid:21128208 Mossa JS, Al-Yahya MA and Al-Meshal IA (1987). Medicinal Plants of Saudi Arabia. King Saud University Press, Riyadh. Muge E, Burg K, Kadu C, Muchugi A, et al. (2009). Isolation of high quality DNA and RNA from cambium of the East African Greenheart (Warburgia ugandensis). Afr. J. Biotechnol. 8: 3036-3040. Niu C, Kebede H, Auld DL, Woodward JE, et al. (2008). A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. Afr. J. Biotechnol. 7: 2818-2822. Płaza GA, Upchurch R, Brigmon RL, Whitman WB, et al. (2004). Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Pol. J. Environ. Stud. 13: 315-318. Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. Rahman MA, Mossa JS, Al-Said MS and Al-Yahya MA (2004). Medicinal plant diversity in the flora of Saudi Arabia 1: a report on seven plant families. Fitoterapia 75: 149-161. PMid:15030919 Wen XP and Deng XX (2002). The extraction of genomic DNA from five species of Rosa. Seed 126: 18-21.