Publications

Found 10 results
Filters: Author is L. Bai  [Clear All Filters]
2013
S. - H. Zhang, Zhu, L., Wu, Z. - H., Zhang, Y., Tang, G. - Q., Jiang, Y. - Z., Li, M. - Z., Bai, L., and Li, X. - W., Effect of muscle-fiber type on glycogenin-1 gene expression and its relationship with the glycolytic potential and pH of pork, vol. 12, pp. 3383-3390, 2013.
H. - Y. Liu, Yang, M. - M., Cui, Y. - H., Ma, T., Liu, X. - Q., Bai, L., Xiao, W. - P., Zhao, H. - B., Peng, J. - Y., Hu, X. - B., and Cao, B. - Y., Transcriptional activity of an ovarian-specific promoter from rat in dairy goat granulosa cells, vol. 12, pp. 127-135, 2013.
Amsterdam A (2003). Novel genes regulated by gonadotropins in granulosa cells: new perspectives on their physiological functions. Mol. Cell Endocrinol. 202: 133-137. http://dx.doi.org/10.1016/S0303-7207(03)00074-1   Areekijseree M and Vejaratpimol R (2006). In vivo and in vitro study of porcine oviductal epithelial cells, cumulus oocyte complexes and granulosa cells: a scanning electron microscopy and inverted microscopy study. Micron 37: 707-716. http://dx.doi.org/10.1016/j.micron.2006.03.004 PMid:16716597   Boshart M, Weber F, Jahn G, Dorsch-Hasler K, et al. (1985). A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41: 521-530. http://dx.doi.org/10.1016/S0092-8674(85)80025-8   Chen AQ, Wang ZG, Xu ZR, Yu SD, et al. (2009). Analysis of gene expression in granulosa cells of ovine antral growing follicles using suppressive subtractive hybridization. Anim. Reprod. Sci. 115: 39-48. http://dx.doi.org/10.1016/j.anireprosci.2008.10.022 PMid:19211204   Cosgaya JM, Perez-Juste G, Castillo AI and Aranda A (1997). Growth factor ligands of tyrosine kinase receptors activate the Rous sarcoma virus promoter by a Ras- and Raf-dependent mechanism. Gene 188: 291-293. http://dx.doi.org/10.1016/S0378-1119(96)00809-8   Foecking MK and Hofstetter H (1986). Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45: 101-105. http://dx.doi.org/10.1016/0378-1119(86)90137-X   Godwin AK, Miller PD, Getts LA, Jackson K, et al. (1995). Retroviral-like sequences specifically expressed in the rat ovary detect genetic differences between normal and transformed rat ovarian surface epithelial cells. Endocrinology 136: 4640-4649. http://dx.doi.org/10.1210/en.136.10.4640 PMid:7664684   Han ZB, Lan GC, Wu YG, Han D, et al. (2006). Interactive effects of granulosa cell apoptosis, follicle size, cumulus-oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction 132: 749-758. http://dx.doi.org/10.1530/REP-06-0055 PMid:17071776   Hundt W, Steinbach S, O'Connell-Rodwell CE, Bednarski MD, et al. (2009). The effect of high intensity focused ultrasound on luciferase activity on two tumor cell lines in vitro, under the control of a CMV promoter. Ultrasonics 49: 312-318. http://dx.doi.org/10.1016/j.ultras.2008.10.002 PMid:19019402   Kimchi-Sarfaty C, Arora M, Sandalon Z, Oppenheim A, et al. (2003). High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences. Hum. Gene Ther. 14: 167-177. http://dx.doi.org/10.1089/104303403321070865 PMid:12614568   Lauber ME, Kagawa N, Waterman MR and Simpson ER (1993). cAMP-dependent and tissue-specific expression of genes encoding steroidogenic enzymes in bovine luteal and granulosa cells in primary culture. Mol. Cell Endocrinol. 93: 227-233. http://dx.doi.org/10.1016/0303-7207(93)90128-7   Machon O, Hejnar J, Hajkova P, Geryk J, et al. (1996). The LTR, v-src, LTR provirus in H-19 hamster tumor cell line is integrated adjacent to the negative regulatory region. Gene 174: 9-17. http://dx.doi.org/10.1016/0378-1119(96)00200-4   Machon O, Strmen V, Hejnar J, Geryk J, et al. (1998). Sp1 binding sites inserted into the Rous sarcoma virus long terminal repeat enhance LTR-driven gene expression. Gene 208: 73-82. http://dx.doi.org/10.1016/S0378-1119(97)00659-8   Majhen D, Brozovic A, Buger T, Gabrilovac J, et al. (2010). Vincristine-resistant human laryngeal carcinoma cells demonstrate increased Rous sarcoma virus promoter activity. Life Sci. 87: 468-474. http://dx.doi.org/10.1016/j.lfs.2010.08.012 PMid:20837033   Niles LP, Wang J, Shen L, Lobb DK, et al. (1999). Melatonin receptor mRNA expression in human granulosa cells. Mol. Cell Endocrinol. 156: 107-110. http://dx.doi.org/10.1016/S0303-7207(99)00135-5   Overbeek PA, Lai SP, Van Quill KR and Westphal H (1986). Tissue-specific expression in transgenic mice of a fused gene containing RSV terminal sequences. Science 231: 1574-1577. http://dx.doi.org/10.1126/science.3006249 PMid:3006249   Park CW, Park YM, Lee GT, Lee Y, et al. (2004). Targeting of therapeutic gene expression to the liver by using liver-type pyruvate kinase proximal promoter and the SV40 viral enhancer active in multiple cell types. Biochem. Biophys. Res. Commun. 314: 131-137. http://dx.doi.org/10.1016/j.bbrc.2003.12.064 PMid:14715256   Patterson A and Harris AL (1999). Molecular chemotherapy for breast cancer. Drugs Aging 14: 75-90. http://dx.doi.org/10.2165/00002512-199914020-00001 PMid:10084362   Picton HM, Campbell BK and Hunter MG (1999). Maintenance of oestradiol production and expression of cytochrome P450 aromatase enzyme mRNA in long-term serum-free cultures of pig granulosa cells. J. Reprod. Fertil. 115: 67-77. http://dx.doi.org/10.1530/jrf.0.1150067 PMid:10341724   Robbins PD and Ghivizzani SC (1998). Viral vectors for gene therapy. Pharmacol. Ther. 80: 35-47. http://dx.doi.org/10.1016/S0163-7258(98)00020-5   Romar R, Coy P, Campos I, Gadea J, et al. (2001). Effect of co-culture of porcine sperm and oocytes with porcine oviductal epithelial cells on in vitro fertilization. Anim. Reprod. Sci. 68: 85-98. http://dx.doi.org/10.1016/S0378-4320(01)00133-6   Selvakumaran M, Bao R, Crijns AP, Connolly DC, et al. (2001). Ovarian epithelial cell lineage-specific gene expression using the promoter of a retrovirus-like element. Cancer Res. 61: 1291-1295. PMid:11245422   Siders WM, Halloran PJ and Fenton RG (1998). Melanoma-specific cytotoxicity induced by a tyrosinase promoter-enhancer/herpes simplex virus thymidine kinase adenovirus. Cancer Gene Ther. 5: 281-291. PMid:9824047   Tsai HJ, Chiu CH, Wang CL and Chou CH (2010). A time-course study of gene responses of chicken granulosa cells to Salmonella enteritidis infection. Vet. Microbiol. 144: 325-333. http://dx.doi.org/10.1016/j.vetmic.2010.01.004 PMid:20138717   Tu CH, Liu WP, Huang LL, Mo YQ, et al. (2009). Cloning and transcriptional activity of a novel ovarian-specific promoter from rat retrovirus-like elements. Arch. Biochem. Biophys. 485: 24-29. http://dx.doi.org/10.1016/j.abb.2009.02.004 PMid:19232512   Vandier D, Rixe O, Brenner M, Gouyette A, et al. (1998). Selective killing of glioma cell lines using an astrocyte-specific expression of the herpes simplex virus-thymidine kinase gene. Cancer Res. 58: 4577-4580. PMid:9788604   Verbraak EJ, van't Veld EM, Groot KM, Roelen BA, et al. (2011). Identification of genes targeted by FSH and oocytes in porcine granulosa cells. Theriogenology 75: 362-376. http://dx.doi.org/10.1016/j.theriogenology.2010.09.008 PMid:20965553
2012
P. Li, Jia, J. W., Jiang, L. X., Zhu, H., Bai, L., Wang, J. B., Tang, X. M., and Pan, A. H., Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence, vol. 11. pp. 1117-1129, 2012.
Berdal KG and Holst-Jensen A (2001). Roundup Ready® soybean event-specific real-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses. Eur. Food Res. Technol. 213: 432-438. http://dx.doi.org/10.1007/s002170100403   Bird R (1994). Border Pinks. Timber Press, Portland.   Center for Food Safety (2006). Genetically Engineered Crops and Foods: Worldwide Regulation and Prohibition. Available at [http://www.centerforfoodsafety.org/pubs/World_Regs_Chart%20_6-2006.pdf]. Accessed April 11, 2011.   Department of Health and Ageing Office of the Gene Technology Requlator AG (2005). The Biology and Ecology of Dianthus Caryophyllus L. (Carnation). Available at [http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/carnation-3/$FILE/biologycarnation.pdf]. Accessed April 11, 2011.   European Commission (2003a). Commission regulation (EC) No. 1829/2003 of September 22, 2003, concerning on genetically modified food and feed. Off. J. Eur. Commun. L268: 1-23.   European Commission (2003b). Commission regulation (EC) No. 1830/2003 of September 22, 2003, concerning the traceability of food and feed products produced from genetically modified organisms and amending directive2001/18/ EC. Off. J. Eur. Commun. L268: 24-28.   European Network of GMO Laboratories (ENGL) (2008). Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Available at [http://gmo-crl.jrc.ec. Europa.eu/doc/Min_Perf_Requirements_Analytical_methods.pdf]. Accessed April 16, 2011.   Guo J, Yang L, Liu X, Guan X, et al. (2009). Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No. 1 papaya. J. Agric. Food Chem. 57: 7205-7212. http://dx.doi.org/10.1021/jf901198x PMid:19645503   Holst-Jensen A, Ronning SB, Lovseth A and Berdal KG (2003). PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal. Chem. 375: 985-993. PMid:12733008   Hu J, Gu QX and Chi J (2004). Carnation Production Technology. China Agricultural Press, Beijing.   Hupfer C, Hotzel H, Sachse K and Engel KH (1998). Detection of the genetic modification in heat-treated products of Bt maize by polymerase chain reaction. Lebensm Unters Forsch. 206: 203-207. http://dx.doi.org/10.1007/s002170050243   James C (2010). Global Status of Commercialized Biotech/GM Crops. ISAAA Brief 42-2010 M. New York, USA: The International Service for the Acquisition of Agri-biotech Applications. Available at [http://www.isaaa.org]. Accessed April 11, 2011.   Jankiewicz A, Broll H and Zagon J (1999). The official method for the detection of genetically modified soybeans: A semi-quantitative study of sensitivity limits with glyphosate-tolerant soybeans (Roundup Ready) and insect-resistant Bt maize (Maximizer). Eur. Food Res. Technol. 209: 77-82. http://dx.doi.org/10.1007/s002170050461   Jiang L, Yang L, Rao J, Guo J, et al. (2010). Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985. J. Sci. Food Agric. 90: 402-408. PMid:20355060   Kahl LS (1994). Summary of Consultation with Calgene, Inc. Concerning FLAVR SAVRTM Tomato. FDA, Docket No. 91A20330.   Kim HY, Kim JH and Oh MH (2010). Regulation and detection methods for genetically modified foods in Korea. Pure Appl. Chem. 82: 129-137. http://dx.doi.org/10.1351/PAC-CON-09-01-21   Lee SH, Yi BY and Kim SJ (2009). Event-specific analytical methods for biotech maize MIR 604 and DAS-59122-7. J. Sci. Food Agric. 89: 2616-2624. http://dx.doi.org/10.1002/jsfa.3764   Liu YG, Mitsukawa N, Oosumi T and Whittier RF (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463. http://dx.doi.org/10.1046/j.1365-313X.1995.08030457.x PMid:7550382   Matsuoka T (2001). GMO Labeling and Detection Methods in Japan. APEC-JIRCAS Joint Symposium and Workshop on Agriculture Biotechnology, September 6, Bangkok, Thailand. JIRCAS, Tsukuba.   Ministry of Agriculture and Forestry (2000). Guidelines for Labeling of Genetically Modified Agriculture Products. MAF Notification 2000-31. Ministry of Agriculture and Forestry, Korea.   Royal Bbotanic Gardens Kew (2005). Plant c-DNA Value Database (Release 4.0, October 2005). Available at [http://www.rbgkew.org.uk/cval/homepage.html]. Accessed April 11, 2011.   Wu G, Wu YH, Xiao L and Lu CM (2008). Event-specific qualitative and quantitative PCR methods for the detection of genetically modified rapeseed Oxy-235. Transgenic Res. 17: 851-861. http://dx.doi.org/10.1007/s11248-008-9168-5 PMid:18283554   Wu G, Wu YH, Xiao L and Lu CM (2009). Event-specific qualitative and quantitative PCR detection of genetically modified rapeseed Topas 19/2. Food Chem. 112: 232-238. http://dx.doi.org/10.1016/j.foodchem.2008.05.105   Yang L, Xu S, Pan A, Yin C, et al. (2005). Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence. J. Agric. Food Chem. 53: 9312-9318. http://dx.doi.org/10.1021/jf051782o PMid:16302741   Zhu H, Jiang LX, Tao SR, Li HY, et al. (2011). Validation of a carnation-specific gene, ANS, used as an endogenous reference gene in qualitative and real-time quantitative PCR for transgenic carnations. J. AOAC int. 94: 1227-1232. PMid:21919356