Publications
Found 19 results
Filters: Author is R. Wang [Clear All Filters]
“Comparison of drought tolerance of banana genotypes”, Genetics and Molecular Research, vol. 19, no. 2, 2020.
, “The 341C/T polymorphism in the GSTP1 gene and lung cancer risk: a meta-analysis”, vol. 15, p. -, 2016.
, “The 341C/T polymorphism in the GSTP1 gene and lung cancer risk: a meta-analysis”, vol. 15, p. -, 2016.
, “Isolation and characterization of microsatellite loci in Quercus fabri (Fagaceae)”, vol. 15, p. -, 2016.
, “Isolation and characterization of microsatellite loci in Quercus fabri (Fagaceae)”, vol. 15, p. -, 2016.
, “Association between HLA-DRB1 alleles and tuberculosis: a meta-analysis”, vol. 14, pp. 15859-15868, 2015.
, “Association between the AGTR1 A1166C polymorphism and risk of IgA nephropathy: a meta-analysis”, vol. 14, pp. 19371-19381, 2015.
, “Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia”, vol. 14, pp. 16041-16049, 2015.
, “Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells”, vol. 14, pp. 15730-15738, 2015.
, “Impact of BMMSCs from different sources on proliferation of CD34+ cells”, vol. 14, pp. 474-482, 2015.
, “Inhibition of gap junctions relieves the hepatotoxicity of TNF-α”, vol. 14, pp. 11896-11904, 2015.
, “Interferon-α-2b as an adjuvant therapy prolongs survival of patients with previously resected oral muscosal melanoma”, vol. 14, pp. 11944-11954, 2015.
, “Post-surgical treatment of a patient with ectopic pheochromocytoma”, vol. 14. pp. 2139-2145, 2015.
, “Relationship between perioperative cardiovascular risk factors and bone marrow cells from patients undergoing coronary artery bypass grafting surgery”, vol. 14, pp. 15233-15241, 2015.
, “Wnt1-induced MAFK expression promotes osteosarcoma cell proliferation”, vol. 14, pp. 7315-7325, 2015.
, “H3K27me3 may be associated with Oct4 and Sox2 in mouse preimplantation embryos”, vol. 13, pp. 10121-10129, 2014.
, “Intervention for prehypertension and its cardiovascular risk factors in Inner Mongolia”, vol. 13, pp. 4867-4882, 2014.
, ,
“Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos”, vol. 11, pp. 1099-1108, 2012.
, Baqir S, Zhou Q, Renard JP and Smith LC (2002). Aberrant expression profile of imprinted genes in cloned mouse embryos reconstructed with ES cells treated with 5AzaC or TSA. Biol. Reprod. 66: 244-250.
Dey SK, Lim H, Das SK, Reese J, et al. (2004). Molecular cues to implantation. Endocr. Rev. 25: 341-373.
http://dx.doi.org/10.1210/er.2003-0020
PMid:15180948
Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, et al. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62: 1526-1535.
http://dx.doi.org/10.1095/biolreprod62.6.1526
PMid:10819752
Eissenberg JC and Shilatifard A (2010). Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339: 240-249.
http://dx.doi.org/10.1016/j.ydbio.2009.08.017
PMid:19703438
Flanagan JF, Mi LZ, Chruszcz M, Cymborowski M, et al. (2005). Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438: 1181-1185.
http://dx.doi.org/10.1038/nature04290
PMid:16372014
Fleming TP, Kwong WY, Porter R, Ursell E, et al. (2004). The embryo and its future. Biol. Reprod. 71: 1046-1054.
http://dx.doi.org/10.1095/biolreprod.104.030957
PMid:15215194
Glaser S, Lubitz S, Loveland KL, Ohbo K, et al. (2009). The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2: 5.
http://dx.doi.org/10.1186/1756-8935-2-5
Guillemette B, Drogaris P, Lin HH, Armstrong H, et al. (2011). H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet. 7: e1001354.
http://dx.doi.org/10.1371/journal.pgen.1001354
PMid:21483810 PMCid:3069113
Hamatani T, Carter MG, Sharov AA and Ko MS (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6: 117-131.
http://dx.doi.org/10.1016/S1534-5807(03)00373-3
Huang JC, Yan LY, Lei ZL, Miao YL, et al. (2007a). Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol. Reprod. 77: 666-670.
http://dx.doi.org/10.1095/biolreprod.107.062703
PMid:17582009
Huang JC, Lei ZL, Shi LH, Miao YL, et al. (2007b). Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem. Biophys. Res. Commun. 354: 77-83.
http://dx.doi.org/10.1016/j.bbrc.2006.12.163
PMid:17210126
Kim JM, Ogura A, Nagata M and Aoki F (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod. 67: 760-766.
http://dx.doi.org/10.1095/biolreprod.101.000612
PMid:12193382
Kim JM, Liu H, Tazaki M, Nagata M, et al. (2003). Changes in histone acetylation during mouse oocyte meiosis. J. Cell Biol. 162: 37-46.
http://dx.doi.org/10.1083/jcb.200303047
PMid:12835313 PMCid:2172711
Li L, Zheng P and Dean J (2010). Maternal control of early mouse development. Development 137: 859-870.
http://dx.doi.org/10.1242/dev.039487
PMid:20179092 PMCid:2834456
McLaren A (1971). Blastocysts in the mouse uterus: the effect of ovariectomy, progesterone and oestrogen. J. Endocrinol. 50: 515-526.
http://dx.doi.org/10.1677/joe.0.0500515
PMid:5558058
Murata K, Kouzarides T, Bannister AJ and Gurdon JB (2010). Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin 3: 4.
http://dx.doi.org/10.1186/1756-8935-3-4
Murray K (1964). The occurrence of epsilon-n-methyl lysine in histones. Biochemistry 3: 10-15.
http://dx.doi.org/10.1021/bi00889a003
PMid:14114491
Nagy A, Gertsenstei M, Vintersten K and Behringer R (2003). Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 161-208.
Nightingale KP, Gendreizig S, White DA, Bradbury C, et al. (2007). Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J. Biol. Chem. 282: 4408-4416.
http://dx.doi.org/10.1074/jbc.M606773200
PMid:17166833
Ruthenburg AJ, Allis CD and Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25: 15-30.
http://dx.doi.org/10.1016/j.molcel.2006.12.014
PMid:17218268
Shi X, Hong T, Walter KL, Ewalt M, et al. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96-99.
PMid:16728974 PMCid:3089773
Shilatifard A (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20: 341-348.
http://dx.doi.org/10.1016/j.ceb.2008.03.019
PMid:18508253 PMCid:2504688
Strömstedt M, Keeney DS, Waterman MR, Paria BC, et al. (1996). Preimplantation mouse blastocysts fail to express CYP genes required for estrogen biosynthesis. Mol. Reprod. Dev. 43: 428-436.
http://dx.doi.org/10.1002/(SICI)1098-2795(199604)43:4<428::AID-MRD4>3.0.CO;2-R
Wysocka J, Swigut T, Xiao H, Milne TA, et al. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86-90.
PMid:16728976
Yamanaka K, Sugimura S, Wakai T, Kawahara M, et al. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 55: 638-644.
http://dx.doi.org/10.1262/jrd.20245
PMid:19700928
Young LE and Fairburn HR (2000). Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology 53: 627-648.
http://dx.doi.org/10.1016/S0093-691X(99)00263-0
Zhao Z, Fan L and Frick KM (2010). Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc. Natl. Acad. Sci. U. S. A. 107: 5605-5610.
http://dx.doi.org/10.1073/pnas.0910578107
PMid:20212170 PMCid:2851775