Publications
Found 18 results
Filters: Author is X.G. Wang [Clear All Filters]
, , ,
“Identification of CD14 transcript in blood polymorphonuclear neutrophil leukocytes and functional variation in Holsteins”, vol. 15, p. -, 2016.
, “Identification of CD14 transcript in blood polymorphonuclear neutrophil leukocytes and functional variation in Holsteins”, vol. 15, p. -, 2016.
, “Identification of CD14 transcript in blood polymorphonuclear neutrophil leukocytes and functional variation in Holsteins”, vol. 15, p. -, 2016.
, “A novel splice variant of the bovine GALNTL5 gene identified in Chinese Holstein bull testis tissue and its mRNA expression”, vol. 15, p. -, 2016.
, , , “Expression and localization of Luman/CREB3 in mouse embryos during the pre-implantation period”, vol. 14, pp. 13595-13602, 2015.
, “Resveratrol could reverse the expression of SIRT1 and MMP-1 in vitro”, vol. 14, pp. 12386-12393, 2015.
, , “De novo DNA methylation of the paternal genome in 2-cell mouse embryos”, vol. 13, pp. 8632-8639, 2014.
, “Identification and characterization of a novel splice variant of the PLCζ1 gene in bull testis tissues”, vol. 13, pp. 9899-9909, 2014.
, “Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development”, vol. 13, pp. 5929-5939, 2014.
, ,
“Doxycycline-regulated growth hormone gene expression system for swine”, vol. 11, pp. 2946-2957, 2012.
,
Barton JS, Cullen S, Hindmarsh PC, Brook CG, et al. (1992). Growth hormone treatment in idiopathic short stature: a preliminary analysis of cardiovascular effects. Acta Pediatr. Suppl. 383: 35-38.
Bockamp E, Sprengel R, Eshkind L, Lehmann T, et al. (2008). Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen. Med. 3: 217-235.
http://dx.doi.org/10.2217/17460751.3.2.217
PMid:18307405
Dick E, Matsa E, Young L, Darling D, et al. (2011). Accelerating the generation of human induced pluripotent stem cells by coupling high titre lentivirus and column-based positive selection of hiPSCs. Nat. Protoc. 6: 701-714.
http://dx.doi.org/10.1038/nprot.2011.320
PMid:21637193
Dull T, Zufferey R, Kelly M, Mandel RJ, et al. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72: 8463-8471.
PMid:9765382 PMCid:110254
Hens JR, Amstutz MD, Schanbacher FL and Mather IH (2000). Introduction of the human growth hormone gene into the guinea pig mammary gland by in vivo transfection promotes sustained expression of human growth hormone in the milk throughout lactation. Biochim. Biophys. Acta 1523: 161-171.
http://dx.doi.org/10.1016/S0304-4165(00)00117-3
Johansen J, Rosenblad C, Andsberg K, Moller A, et al. (2002). Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther. 9: 1291-1301.
http://dx.doi.org/10.1038/sj.gt.3301778
PMid:12224012
Kolb E (1977). Recent findings relating to the importance of growth hormone to both regulation of metabolism and production performance of ruminants (author's transl). Monatsh. Veterinarmed. 32: 230-235.
PMid:327288
Krasnov A, Agren JJ, Pitaknen TI and Molsa H (1999). Transfer of growth hormone (GH) transgenes into Arctic charr. (Salvelinus alpinus L.) II. Nutrient partitioning in rapidly growing fish. Genet. Anal. 15: 99-105.
http://dx.doi.org/10.1016/S1050-3862(99)00026-1
Lipinski D, Jura J, Kalak R, Plawski A, et al. (2003). Transgenic rabbit producing human growth hormone in milk. J. Appl. Genet. 44: 165-174.
PMid:12773794
Madsen K, Friberg U, Roos P, Eden S, et al. (1983). Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Nature 304: 545-547.
http://dx.doi.org/10.1038/304545a0
PMid:6877376
Mayo KE, Vale W, Rivier J, Rosenfeld MG, et al. (1983). Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature 306: 86-88.
http://dx.doi.org/10.1038/306086a0
PMid:6415488
Naldini L, Blomer U, Gallay P, Ory D, et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263-267.
http://dx.doi.org/10.1126/science.272.5259.263
PMid:8602510
Orian JM, Lee CS, Weiss LM and Brandon MR (1989). The expression of a metallothionein-ovine growth hormone fusion gene in transgenic mice does not impair fertility but results in pathological lesions in the liver. Endocrinology 124: 455-463.
http://dx.doi.org/10.1210/endo-124-1-455
PMid:2642419
Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, et al. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-616.
http://dx.doi.org/10.1038/300611a0
PMid:6958982
Takiguchi M, James C, Josefsson EC, Carmichael CL, et al. (2010). Transgenic, inducible RNAi in megakaryocytes and platelets in mice. J. Thromb. Haemost. 8: 2751-2756.
http://dx.doi.org/10.1111/j.1538-7836.2010.04077.x
PMid:21138522 PMCid:3285240
Wiederschain D, Wee S, Chen L, Loo A, et al. (2009). Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8: 498-504.
http://dx.doi.org/10.4161/cc.8.3.7701
PMid:19177017
“Generation of induced pluripotent mouse stem cells in an indirect co-culture system”, vol. 11, pp. 4179-4186, 2012.
,
Abraham S, Sheridan SD, Laurent LC, Albert K, et al. (2010). Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system. Biochem. Biophys. Res. Commun. 393: 211-216.
http://dx.doi.org/10.1016/j.bbrc.2010.01.101
PMid:20117095 PMCid:2834855
Chen J, Liu J, Han Q, Qin D, et al. (2010). Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J. Biol. Chem. 285: 31066-31072.
http://dx.doi.org/10.1074/jbc.M110.139436
PMid:20595395 PMCid:2945597
Chen M, Sun X, Jiang R, Shen W, et al. (2009). Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts. Cell Biol. Int. 33: 1268-1273.
http://dx.doi.org/10.1016/j.cellbi.2009.06.004
PMid:19524692
Eiselleova L, Peterkova I, Neradil J, Slaninova I, et al. (2008). Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52: 353-363.
http://dx.doi.org/10.1387/ijdb.082590le
PMid:18415935
Esteban MA, Xu J, Yang J, Peng M, et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284: 17634-17640.
http://dx.doi.org/10.1074/jbc.M109.008938
PMid:19376775 PMCid:2719402
Esteban MA, Wang T, Qin B, Yang J, et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem. Cell 6: 71-79.
http://dx.doi.org/10.1016/j.stem.2009.12.001
PMid:20036631
Hanna J, Wernig M, Markoulaki S, Sun CW, et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923.
http://dx.doi.org/10.1126/science.1152092
PMid:18063756
Kim S, Ahn SE, Lee JH, Lim DS, et al. (2007). A novel culture technique for human embryonic stem cells using porous membranes. Stem. Cells 25: 2601-2609.
http://dx.doi.org/10.1634/stemcells.2006-0814
PMid:17628020
Lim JW and Bodnar A (2002). Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2: 1187-1203.
http://dx.doi.org/10.1002/1615-9861(200209)2:9<1187::AID-PROT1187>3.0.CO;2-T
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, et al. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem. Cell 3: 340-345.
http://dx.doi.org/10.1016/j.stem.2008.08.003
PMid:18786420
Okita K, Ichisaka T and Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317.
http://dx.doi.org/10.1038/nature05934
PMid:17554338
Soh BS, Song CM, Vallier L, Li P, et al. (2007). Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem. Cells 25: 3029-3037.
http://dx.doi.org/10.1634/stemcells.2007-0372
PMid:17823238
Sun N, Panetta NJ, Gupta DM, Wilson KD, et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. U. S. A. 106: 15720-15725.
http://dx.doi.org/10.1073/pnas.0908450106
PMid:19805220 PMCid:2739869
Takahashi K and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
http://dx.doi.org/10.1016/j.cell.2006.07.024
PMid:16904174
Takahashi K, Okita K, Nakagawa M and Yamanaka S (2007). Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2: 3081-3089.
http://dx.doi.org/10.1038/nprot.2007.418
PMid:18079707