Publications
Found 9 results
Filters: Author is S.A. Rhoden [Clear All Filters]
“Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
The authors would like to thank the Complexo de Centrais de Apoio à Pesquisa (COMCAP/UEM) for sequencing the ITS1-5.8S-ITS2 regions; thanks are due to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) for Master’s scholarships (R.N. Alberto and J.C. Polonio) and CAPES/PNPD-UEM for the post-doctoral scholarship (A.T. Costa). The authors would also like to thank CNPq (#311534/2014-7 and #447265/2014-8) and Fundação Araucária (#276/2014) for funding the current research.
REFERENCES
Almeida TT, Orlandelli RC, Azevedo JL, Pamphile JA, et al (2015). Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Paraná River floodplain, Brazil. Genet. Mol. Res. 14: 4920-4931. http://dx.doi.org/10.4238/2015.May.11.25
Anbu P, Gopinath SCB, Cihan AC, Chaulagain BP, et al (2013). Microbial enzymes and their applications in industries and medicine. BioMed Res. Int. 204014: .http://dx.doi.org/10.1155/2013/204014
Bernardi-Wenzel J, García A, Filho CJ, Prioli AJ, et al (2010). Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol. Res. 43: 375-384. http://dx.doi.org/10.4067/S0716-97602010000400001
Bezerra JD, Nascimento CC, Barbosa RdoN, da Silva DC, et al (2015). Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz. J. Microbiol. 46: 49-57. http://dx.doi.org/10.1590/S1517-838246120130657
Choi YW, Hodgkiss IJ, Hyde KD, et al (2005). Enzyme production by endophytes of Brucea javanica. International J. Agric. Technol. 1: 55-66.
D’Souza MA, Hiremath KG, et al (2015). Isolation and bioassay screening of medicinal plant endophytes from Western Ghats forests, Goa, India. Int. J. Adv. Res. Biol. Sci. 2: 176-190.
de Souza PM, de Oliveira Magalhães P, et al (2010). Application of microbial α-amylase in industry - A review. Braz. J. Microbiol. 41: 850-861 .http://dx.doi.org/10.1590/S1517-83822010000400004
Desire MH, Bernard F, Forsah MR, Assang CT, et al (2014). Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. leaves. J. Appl. Biol. Biotechnol. 2: 1-6 .http://dx.doi.org/10.7324/JABB.2014.2601
Duza MB, Mastan SA, et al (2013). Microbial enzymes and their applications - a review. Indo Am. J. Pharmaceut. Res. 3: 6208-6219.
Eriksson OE, Hawksworth DL, et al (2003). Saccharicola, a new genus for two Leptosphaeria species on sugar cane. Mycologia 95: 426-433. http://dx.doi.org/10.2307/3761884
Ferreira DF, et al (2011). Sisvar: a computer statistical analysis system. Cienc. Agrotec. 35: 1039-1042 .http://dx.doi.org/10.1590/S1413-70542011000600001
García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, et al (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res. 45: 139-148. http://dx.doi.org/10.4067/S0716-97602012000200006
Gomes RR, Glienke C, Videira SI, Lombard L, et al (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1-41. http://dx.doi.org/10.3767/003158513X666844
Gupta S, Kaul S, Singh B, Vishwakarma RA, et al (2016). Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. Appl. Biochem. Biotechnol.; Epub ahead of print] .http://dx.doi.org/10.1007/s12010-016-2154-0
Jain P, Aggarwal V, Sharma A, Pundir RK, et al (2012). Screening of endophytic fungus Acremonium sp. for amylase production. Int. J. Agric. Technol. 8: 1353-1364.
Kedar A, Rathod D, Yadav A, Agarkar G, et al (2014). Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience 6: 132-139 .http://dx.doi.org/10.13057/nusbiosci/n060205
Keller NP, Turner G, Bennett JW, et al (2005). Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937-947. http://dx.doi.org/10.1038/nrmicro1286
Kusari S, Singh S, Jayabaskaran C, et al (2014). Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 32: 297-303. http://dx.doi.org/10.1016/j.tibtech.2014.03.009
Leme AC, Bevilaqua MR, Rhoden SA, Mangolin CA, et al (2013). Molecular characterization of endophytes isolated from Saccharum spp based on esterase and ribosomal DNA (ITS1-5.8S-ITS2) analyses. Genet. Mol. Res. 12: 4095-4105. http://dx.doi.org/10.4238/2013.September.27.11
Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, et al (2014). The genus Bipolaris. Stud. Mycol. 79: 221-288. http://dx.doi.org/10.1016/j.simyco.2014.10.002
Meng L, Sun P, Tang H, Li L, et al (2011). Endophytic fungus Penicillium chrysogenum, a new source of hypocrellins. Biochem. Syst. Ecol. 39: 163-165. http://dx.doi.org/10.1016/j.bse.2011.02.003
Mishra Y, Singh A, Batra A and Sharma MM (2014). Understanding the biodiversity and biological applications of endophytic fungi: a review. J. Microb. Biochem. Tech. S8: 004. http://dx.doi.org/http://dx.doi.org/10.4172/1948-5948.S8-004
Onofre SB, Mattiello SP, da Silva GC, Groth D, et al (2013). Production of cellulases by the endophytic fungus Fusarium oxysporum. J. Microbiol. Res. 3: 131-134. http://dx.doi.org/10.5923/j.microbiology.20130304.01
Orlandelli RC, Alberto RN, Rubin Filho CJ, Pamphile JA, et al (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet. Mol. Res. 11: 1575-1585. http://dx.doi.org/10.4238/2012.May.22.7
Orlandelli RC, de Almeida TT, Alberto RN, Polonio JC, et al (2015). Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz. J. Microbiol. 46: 359-366. http://dx.doi.org/10.1590/S1517-838246220131042
Pamphile JA, Azevedo JL, et al (2002). Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays L). World J. Microbiol. Biotechnol. 18: 391-396. http://dx.doi.org/10.1023/A:1015507008786
Patil MG, Pagare J, Patil SN, Sidhu AK, et al (2015). Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int. J. Curr. Microbiol. Applied Sci. 4: 1035-1042.
Raeder U, Broda P, et al (1985). Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20. http://dx.doi.org/10.1111/j.1472-765X.1985.tb01479.x
Rai MK, Tiwari VV, Irinyi L, Kövics GJ, et al (2014). Advances in taxonomy of genus phoma: polyphyletic nature and role of phenotypic traits and molecular systematics. Indian J. Microbiol. 54: 123-128. http://dx.doi.org/10.1007/s12088-013-0442-8
Raju DC, Thomas SM, Thomas SE, et al (2015). Screening for extracellular enzyme production in endophytic fungi isolation from Calophyllum inophyllum L leaves. J. Chem. Pharm. Res. 7: 900-904.
Rhoden SA, Garcia A, Rubin Filho CJ, Azevedo JL, et al (2012). Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet. Mol. Res. 11: 2513-2522. http://dx.doi.org/10.4238/2012.June.15.8
Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, et al (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers. 42: 27-45. http://dx.doi.org/10.1007/s13225-009-0013-9
Sudha V, Govindaraj R, Baskar K, Al-Dhabi NA, et al (2016). Biological properties of endophytic fungi. Braz. Arch. Biol. Technol. 59: e16150436. http://dx.doi.org/10.1590/1678-4324-2016150436
Sunitha VH, Nirmala Devi D and Srinivas C (2013). Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J. Agr. Sci. 9: 01-09. http://dx.doi.org/http://dx.doi.org/10.5829/idosi.wjas.2013.9.1.72148
Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, et al (2009). Fungal endophytes and bioprospecting. Fungal Biol. Rev. 23: 9-19. http://dx.doi.org/10.1016/j.fbr.2009.07.001
Tamura K, Peterson D, Peterson N, Stecher G, et al (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121
Vardhini SRD, Irfath M, et al (2013). Isolation, production, purification and applications of proteases from Pseudomonas aeruginosa. Vedic Res. Int. Biol. Med. Chem. 1: 69-73. http://dx.doi.org/10.14259/bmc.v1i2.77
Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF, et al (2012). Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J. Microbiol. Biotechnol. 28: 71-80. http://dx.doi.org/10.1007/s11274-011-0793-4
Wang LW, Xu BG, Wang JY, Su ZZ, et al (2012). Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl. Microbiol. Biotechnol. 93: 1231-1239. http://dx.doi.org/10.1007/s00253-011-3472-3
White TJ, Bruns T, Lee S and Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols. A guide to methods and applications (Innis MA, Gelfland DH, Sninsky JJ and White TJ, eds.). Academic Press, San Diego, 315-322.
“Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
The authors would like to thank the Complexo de Centrais de Apoio à Pesquisa (COMCAP/UEM) for sequencing the ITS1-5.8S-ITS2 regions; thanks are due to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) for Master’s scholarships (R.N. Alberto and J.C. Polonio) and CAPES/PNPD-UEM for the post-doctoral scholarship (A.T. Costa). The authors would also like to thank CNPq (#311534/2014-7 and #447265/2014-8) and Fundação Araucária (#276/2014) for funding the current research.
REFERENCES
Almeida TT, Orlandelli RC, Azevedo JL, Pamphile JA, et al (2015). Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Paraná River floodplain, Brazil. Genet. Mol. Res. 14: 4920-4931. http://dx.doi.org/10.4238/2015.May.11.25
Anbu P, Gopinath SCB, Cihan AC, Chaulagain BP, et al (2013). Microbial enzymes and their applications in industries and medicine. BioMed Res. Int. 204014: .http://dx.doi.org/10.1155/2013/204014
Bernardi-Wenzel J, García A, Filho CJ, Prioli AJ, et al (2010). Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol. Res. 43: 375-384. http://dx.doi.org/10.4067/S0716-97602010000400001
Bezerra JD, Nascimento CC, Barbosa RdoN, da Silva DC, et al (2015). Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz. J. Microbiol. 46: 49-57. http://dx.doi.org/10.1590/S1517-838246120130657
Choi YW, Hodgkiss IJ, Hyde KD, et al (2005). Enzyme production by endophytes of Brucea javanica. International J. Agric. Technol. 1: 55-66.
D’Souza MA, Hiremath KG, et al (2015). Isolation and bioassay screening of medicinal plant endophytes from Western Ghats forests, Goa, India. Int. J. Adv. Res. Biol. Sci. 2: 176-190.
de Souza PM, de Oliveira Magalhães P, et al (2010). Application of microbial α-amylase in industry - A review. Braz. J. Microbiol. 41: 850-861 .http://dx.doi.org/10.1590/S1517-83822010000400004
Desire MH, Bernard F, Forsah MR, Assang CT, et al (2014). Enzymes and qualitative phytochemical screening of endophytic fungi isolated from Lantana camara Linn. leaves. J. Appl. Biol. Biotechnol. 2: 1-6 .http://dx.doi.org/10.7324/JABB.2014.2601
Duza MB, Mastan SA, et al (2013). Microbial enzymes and their applications - a review. Indo Am. J. Pharmaceut. Res. 3: 6208-6219.
Eriksson OE, Hawksworth DL, et al (2003). Saccharicola, a new genus for two Leptosphaeria species on sugar cane. Mycologia 95: 426-433. http://dx.doi.org/10.2307/3761884
Ferreira DF, et al (2011). Sisvar: a computer statistical analysis system. Cienc. Agrotec. 35: 1039-1042 .http://dx.doi.org/10.1590/S1413-70542011000600001
García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, et al (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res. 45: 139-148. http://dx.doi.org/10.4067/S0716-97602012000200006
Gomes RR, Glienke C, Videira SI, Lombard L, et al (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1-41. http://dx.doi.org/10.3767/003158513X666844
Gupta S, Kaul S, Singh B, Vishwakarma RA, et al (2016). Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides. Appl. Biochem. Biotechnol.; Epub ahead of print] .http://dx.doi.org/10.1007/s12010-016-2154-0
Jain P, Aggarwal V, Sharma A, Pundir RK, et al (2012). Screening of endophytic fungus Acremonium sp. for amylase production. Int. J. Agric. Technol. 8: 1353-1364.
Kedar A, Rathod D, Yadav A, Agarkar G, et al (2014). Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscience 6: 132-139 .http://dx.doi.org/10.13057/nusbiosci/n060205
Keller NP, Turner G, Bennett JW, et al (2005). Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937-947. http://dx.doi.org/10.1038/nrmicro1286
Kusari S, Singh S, Jayabaskaran C, et al (2014). Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol. 32: 297-303. http://dx.doi.org/10.1016/j.tibtech.2014.03.009
Leme AC, Bevilaqua MR, Rhoden SA, Mangolin CA, et al (2013). Molecular characterization of endophytes isolated from Saccharum spp based on esterase and ribosomal DNA (ITS1-5.8S-ITS2) analyses. Genet. Mol. Res. 12: 4095-4105. http://dx.doi.org/10.4238/2013.September.27.11
Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, et al (2014). The genus Bipolaris. Stud. Mycol. 79: 221-288. http://dx.doi.org/10.1016/j.simyco.2014.10.002
Meng L, Sun P, Tang H, Li L, et al (2011). Endophytic fungus Penicillium chrysogenum, a new source of hypocrellins. Biochem. Syst. Ecol. 39: 163-165. http://dx.doi.org/10.1016/j.bse.2011.02.003
Mishra Y, Singh A, Batra A and Sharma MM (2014). Understanding the biodiversity and biological applications of endophytic fungi: a review. J. Microb. Biochem. Tech. S8: 004. http://dx.doi.org/http://dx.doi.org/10.4172/1948-5948.S8-004
Onofre SB, Mattiello SP, da Silva GC, Groth D, et al (2013). Production of cellulases by the endophytic fungus Fusarium oxysporum. J. Microbiol. Res. 3: 131-134. http://dx.doi.org/10.5923/j.microbiology.20130304.01
Orlandelli RC, Alberto RN, Rubin Filho CJ, Pamphile JA, et al (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet. Mol. Res. 11: 1575-1585. http://dx.doi.org/10.4238/2012.May.22.7
Orlandelli RC, de Almeida TT, Alberto RN, Polonio JC, et al (2015). Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz. J. Microbiol. 46: 359-366. http://dx.doi.org/10.1590/S1517-838246220131042
Pamphile JA, Azevedo JL, et al (2002). Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays L). World J. Microbiol. Biotechnol. 18: 391-396. http://dx.doi.org/10.1023/A:1015507008786
Patil MG, Pagare J, Patil SN, Sidhu AK, et al (2015). Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int. J. Curr. Microbiol. Applied Sci. 4: 1035-1042.
Raeder U, Broda P, et al (1985). Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20. http://dx.doi.org/10.1111/j.1472-765X.1985.tb01479.x
Rai MK, Tiwari VV, Irinyi L, Kövics GJ, et al (2014). Advances in taxonomy of genus phoma: polyphyletic nature and role of phenotypic traits and molecular systematics. Indian J. Microbiol. 54: 123-128. http://dx.doi.org/10.1007/s12088-013-0442-8
Raju DC, Thomas SM, Thomas SE, et al (2015). Screening for extracellular enzyme production in endophytic fungi isolation from Calophyllum inophyllum L leaves. J. Chem. Pharm. Res. 7: 900-904.
Rhoden SA, Garcia A, Rubin Filho CJ, Azevedo JL, et al (2012). Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet. Mol. Res. 11: 2513-2522. http://dx.doi.org/10.4238/2012.June.15.8
Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, et al (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers. 42: 27-45. http://dx.doi.org/10.1007/s13225-009-0013-9
Sudha V, Govindaraj R, Baskar K, Al-Dhabi NA, et al (2016). Biological properties of endophytic fungi. Braz. Arch. Biol. Technol. 59: e16150436. http://dx.doi.org/10.1590/1678-4324-2016150436
Sunitha VH, Nirmala Devi D and Srinivas C (2013). Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J. Agr. Sci. 9: 01-09. http://dx.doi.org/http://dx.doi.org/10.5829/idosi.wjas.2013.9.1.72148
Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, et al (2009). Fungal endophytes and bioprospecting. Fungal Biol. Rev. 23: 9-19. http://dx.doi.org/10.1016/j.fbr.2009.07.001
Tamura K, Peterson D, Peterson N, Stecher G, et al (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121
Vardhini SRD, Irfath M, et al (2013). Isolation, production, purification and applications of proteases from Pseudomonas aeruginosa. Vedic Res. Int. Biol. Med. Chem. 1: 69-73. http://dx.doi.org/10.14259/bmc.v1i2.77
Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF, et al (2012). Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J. Microbiol. Biotechnol. 28: 71-80. http://dx.doi.org/10.1007/s11274-011-0793-4
Wang LW, Xu BG, Wang JY, Su ZZ, et al (2012). Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl. Microbiol. Biotechnol. 93: 1231-1239. http://dx.doi.org/10.1007/s00253-011-3472-3
White TJ, Bruns T, Lee S and Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols. A guide to methods and applications (Innis MA, Gelfland DH, Sninsky JJ and White TJ, eds.). Academic Press, San Diego, 315-322.
“Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant #311534/2014-7 and #447265/2014-8) and Fundação Araucária (grant FA-#276/2014), and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) via scholarship to A. Garcia, J.C. Polonio, A.D. Polli, and C.M. Santos.REFERENCESde Oliveira Costa LE, de Queiroz MV, Borges AC, de Moraes CA, et al (2012). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz. J. Microbiol. 43: 1562-1575. http://dx.doi.org/10.1590/S1517-83822012000400041 Gans J, Wolinsky M, Dunbar J, et al (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387-1390. http://dx.doi.org/10.1126/science.1112665 Garcia A, Rhoden SA, Bernardi-Wenzel J, Orlandelli RC, et al (2012a). Antimicrobial activity of crude extracts of endophytic fungi isolated from the medicinal plant Sapindus saponaria L. J. Appl. Pharm. Sci. 2: 35-40. García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, et al (2012b). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol. Res. 45: 139-148. http://dx.doi.org/10.4067/S0716-97602012000200006 García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, et al (2013). Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb. Biotechnol. 6: 36-44. http://dx.doi.org/10.1111/j.1751-7915.2012.00358.x Hallmann J and Berg G (2006). Spectrum and population dynamics of bacterial root endophytes. In: Microbial root endophytes (Schulz B, Boyle C and Sieber TN, eds.). Springer-Verlag, Berlin, Heidelberg, 15-31. Johnston-Monje D, Lundberg DS, Lazarovits G, Reis VM, et al (2016). Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405: 337-355. http://dx.doi.org/10.1007/s11104-016-2826-0 Kemmitt SJ, Wright D, Goulding KWT, Jones DL, et al (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38: 898-911. http://dx.doi.org/10.1016/j.soilbio.2005.08.006 Keswani J, Whitman WB, et al (2001). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int. J. Syst. Evol. Microbiol. 51: 667-678. http://dx.doi.org/10.1099/00207713-51-2-667 Mendes R, Kruijt M, de Bruijn I, Dekkers E, et al (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097-1100. http://dx.doi.org/10.1126/science.1203980 Miguel PSB, Delvaux JC, de Oliveira MNV, Monteiro LCP, et al (2013). Diversity of endophytic bacteria in the fruits of Coffea canephora. Afr. J. Microbiol. Res. 7: 586-594. http://dx.doi.org/10.5897/AJMR12.2036 Morgan JAW and Whipps JM (2001). Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: The rhizosphere. Biochemistry and organic substances at the soil-plant interface. 1st edn. (Pinton R, Varanini Z and Nannipieri P, eds.). Marcel Dekker, New York, 373-409. Nacke H, Thürmer A, Wollherr A, Will C, et al (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6: e17000. http://dx.doi.org/10.1371/journal.pone.0017000 Nielsen AT, Liu WT, Filipe C, GradyLJret al (1999). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65: 1251-1258. Pelczar MJ, Jr., Chan ECS and Krieg NR (2011). Microbiologia: Conceitos e Aplicações. 2nd edn. Pearson Education do Brasil, São Paulo. Pelegrini DD, Tsuzuki JK, Amado CAB, Cortez DAG, et al (2008). Biological activity and isolated compounds in Sapindus saponaria L. and other plants of the genus Sapindus. Lat. Am. J. Pharm. 27: 922-927. Polonio JC, Almeida TT, Garcia A, Mariucci GE, et al (2015). Biotechnological prospecting of foliar endophytic fungi of guaco (Mikania glomerata Spreng.) with antibacterial and antagonistic activity against phytopathogens. Genet. Mol. Res. 14: 7297-7309. http://dx.doi.org/10.4238/2015.July.3.5 Qi X, Wang E, Xing M, Zhao W, et al (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J. Microbiol. Biotechnol. 28: 2257-2265. http://dx.doi.org/10.1007/s11274-012-1033-2 Rhoden SA, Garcia A, Bongiorno VA, Azevedo JL, et al (2012). Antimicrobial activity of crude extracts of endophytic fungi isolated from the medicinal plant Trichilia elegans A Juss. J. Appl. Pharm. Sci. 2: 57-59. Roesch LF, Fulthorpe RR, Riva A, Casella G, et al (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1: 283-290. Schloss PD, Handelsman J, et al (2006). Toward a census of bacteria in soil. PLOS Comput. Biol. 2: e92. http://dx.doi.org/10.1371/journal.pcbi.0020092 Schulz B, Boyle C, et al (2005). The endophytic continuum. Mycol. Res. 109: 661-686. http://dx.doi.org/10.1017/S095375620500273X Silva-Lacerda GR, Santana RC, Vicalvi-Costa MC, Solidônio EG, et al (2016). Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul. Genet. Mol. Res. 15: 15017488. http://dx.doi.org/10.4238/gmr.15017488 Singh BK, Bardgett RD, Smith P, Reay DS, et al (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8: 779-790. http://dx.doi.org/10.1038/nrmicro2439 Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, et al (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS One 9: e99641. http://dx.doi.org/10.1371/journal.pone.0099641
“Biotechnological prospecting of foliar endophytic fungi of guaco (Mikania glomerata Spreng.) with antibacterial and antagonistic activity against phytopathogens”, vol. 14, pp. 7297-7309, 2015.
, , , “In silico analysis of diverse endophytic fungi by using ITS1-5,8S-ITS2 sequences with isolates from various plant families in Brazil”, vol. 12, pp. 935-950, 2013.
, , Abreu LM, Costa SS, Pfenning LH, Takahashi JA, et al. (2012). Chemical and molecular characterization of Phomopsis and Cytospora-like endophytes from different host plants in Brazil. Fungal Biol. 116: 249-260.
http://dx.doi.org/10.1016/j.funbio.2011.11.008
PMid:22289771
Alexopoulos CJ, Mims CW and Blackwell M (1996). Introductory Mycology. John Wiley & Sons Inc., New York.
Altschul SF, Gish W, Miller W, Myers EW, et al. (1990). Basic Local Alignment Search Tool. J. Mol. Biol. 215: 403-410.
PMid:2231712
Arnold AE (2008). Tropical Forest Community Ecology. In: Endophytic Fungi: Hidden Components of Tropical Community Ecology (Carson W and Schnitzer S, eds.). Blackwell Scientific, Inc., Malden, 254-271.
PMid:18257039
Arnold AE, Henk DA, Eells RL, Lutzoni F, et al. (2007). Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99: 185-206.
http://dx.doi.org/10.3852/mycologia.99.2.185
PMid:17682771
Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, et al. (2009). A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst. Biol. 58: 283-297.
http://dx.doi.org/10.1093/sysbio/syp001
PMid:20525584
Azevedo JL, Maccheroni W Jr, Pereira JO and Araújo WL (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. EJB: Eletron. J. Biotechnol. 3: 40-65.
Bellemain E, Carlsen T, Brochmann C, Coissac E, et al. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10: 189.
http://dx.doi.org/10.1186/1471-2180-10-189
PMid:20618939 PMCid:2909996
Bernardi-Wenzel J, Garcia A, Filho CJ, Prioli AJ, et al. (2010). Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol. Res. 43: 375-384.
PMid:21526263
Chen SH, Lin CY and Kuo CM (2005). In silico analysis of crustacean hyperglycemic hormone family. Mar. Biotechnol. 7: 193-206.
http://dx.doi.org/10.1007/s10126-004-0020-5
PMid:15933902
Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
http://dx.doi.org/10.2307/2408678
Gai CS, Lacava PT, Maccheroni W Jr, Glienke C, et al. (2009). Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. J. Basic Microbiol. 49: 441-451.
http://dx.doi.org/10.1002/jobm.200800328
PMid:19798655
Gilbert LB, Chae L, Kasuga T and Taylor JW (2011). Array Comparative Genomic Hybridizations: assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics 12: 456.
http://dx.doi.org/10.1186/1471-2164-12-456
PMid:21936922 PMCid:3196971
Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, et al. (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol. Phylogenet. Evol. 42: 543-555.
http://dx.doi.org/10.1016/j.ympev.2006.07.012
PMid:17005421
Jasinski JPP and Payette S (2007). Holocene occurrence of Lophodermium piceae, a black spruce needle endophyte and possible paleoindicator of boreal forest health. Quaternary Res. 67: 50-56.
http://dx.doi.org/10.1016/j.yqres.2006.07.008
Kirk PM, Cannon PF, Minter DW and Stalpers JA (2008). Ainsworth & Bisby's Dictionary of the Fungi. CAB International, Wallingford.
Kogel KH, Franken P and Huckelhoven R (2006). Endophyte or parasite - what decides? Curr. Opin. Plant Biol. 9: 358-363.
http://dx.doi.org/10.1016/j.pbi.2006.05.001
PMid:16713330
Koulman A, Lane GA, Christensen MJ, Fraser K, et al. (2007). Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68: 355-360.
http://dx.doi.org/10.1016/j.phytochem.2006.10.012
PMid:17126863
MMA/SBF. Ministério do Meio Ambiente SdBeF (2002). Biodiversidade Brasileira: Avaliação e Identificação de Áreas e Ações Prioritárias para Conservação, Utilização Sustentável e Repartição de Benefícios da Biodiversidade Brasileira. SBF, Brasília. Available at [http://www.mma.gov.br/estruturas/chm/_arquivos/biodivbr.pdf]. Accessed May 15, 2012.
Palsson B (2000). The challenges of in silico biology: Moving from a reductionist paradigm to one that views cells as systems will necessitate changes in both the culture and the practice of research. Nat. Biotechnol. 18: 1147-1150.
http://dx.doi.org/10.1038/81125
PMid:11062431
Pamphile JA and Azevedo JL (2002). Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays L.). World J. Microbiol. Biotechnol. 18: 391-396.
http://dx.doi.org/10.1023/A:1015507008786
Rhoden SA, Garcia A, Rubin Filho CJ, Azevedo JL, et al. (2012). Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet. Mol. Res. 11: 2513-2522.
http://dx.doi.org/10.4238/2012.June.15.8
PMid:22782630
Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, et al. (2011). Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers. 47: 75-84.
http://dx.doi.org/10.1007/s13225-010-0044-2
Rosa LH, Gonçalves VN, Caligiorne RB, Alves TMA, et al. (2010). Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in Brazil. Braz. J. Microbiol. 41: 420-430.
http://dx.doi.org/10.1590/S1517-83822010000200024
Rubini MR, Silva-Ribeiro RT, Pomella AW, Maki CS, et al. (2005). Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease. Int. J. Biol. Sci. 1: 24-33.
http://dx.doi.org/10.7150/ijbs.1.24
PMid:15951847 PMCid:1140355
Saikkonen K, Wali P, Helander M and Faeth SH (2004). Evolution of endophyte-plant symbioses. Trends Plant Sci. 9: 275-280.
http://dx.doi.org/10.1016/j.tplants.2004.04.005
PMid:15165558
Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
PMid:3447015
Sette LD, Passarini MRZ, Delarmelina C, Salati F, et al. (2006). Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J. Microb. Biot. 22: 1185-1195.
http://dx.doi.org/10.1007/s11274-006-9160-2
Souza AQL, Souza ADL, Astolfi-Filho S, Belém-Pinheiro ML, et al. (2004). Atividade antimicrobiana de fungos endofíticos isolados de plantas tóxicas da Amazônia: Palicourea longiflora (Aubl.) rich e Strychnos cogens bentham. Acta Amaz. 34: 185-195.
http://dx.doi.org/10.1590/S0044-59672004000200006
Strobel GA (2003). Endophytes as sources of bioactive products. Microbes Infect. 5: 535-544.
http://dx.doi.org/10.1016/S1286-4579(03)00073-X
Strobel GA, Hess WM, Ford E, Sidhu RS, et al. (1996). Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. Biot. 17: 417-423.
http://dx.doi.org/10.1007/BF01574772
Stuart RM, Romao AS, Pizzirani-Kleiner AA, Azevedo JL, et al. (2010). Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch. Microbiol. 192: 307-313.
http://dx.doi.org/10.1007/s00203-010-0557-9
PMid:20191263
Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
http://dx.doi.org/10.1093/molbev/msr121
PMid:21546353 PMCid:3203626
Vaz AB, Mota RC, Bomfim MR, Vieira ML, et al. (2009). Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can. J. Microbiol. 55: 1381-1391.
http://dx.doi.org/10.1139/W09-101
PMid:20029530
Victoria FC, da Maia LC and de Oliveira AC (2011). In silico comparative analysis of SSR markers in plants. BMC Plant Biol. 11: 15.
http://dx.doi.org/10.1186/1471-2229-11-15
PMid:21247422 PMCid:3037304
Vieira ML, Hughes AF, Gil VB, Vaz AB, et al. (2012). Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can. J. Microbiol. 58: 54-66.
http://dx.doi.org/10.1139/w11-105
PMid:22182199
Wickert E, de Goes A, de Macedo Lemos EG, de Souza A, et al. (2009). Relações filogenéticas e diversidade de isolados de Guignardia spp oriundos de diferentes hospedeiros nas regiões ITS1-5,8S-ITS2. Rev. Bras. Frutic. 31: 360-380.
http://dx.doi.org/10.1590/S0100-29452009000200010
“Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae)”, vol. 11, pp. 2513-2522, 2012.
,
Agusta A, Ohashi K and Shibuya H (2006). Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis. J. Nat. Med. 60: 268-272.
http://dx.doi.org/10.1007/s11418-006-0038-2
Arnold AE and Herre EA (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95: 388-389.
http://dx.doi.org/10.2307/3761880
PMid:21156627
Arnold AE, Henk DA, Eells RL, Lutzoni F, et al. (2007). Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99: 185-206.
http://dx.doi.org/10.3852/mycologia.99.2.185
PMid:17682771
Azevedo JL, Maccheroni Jr W, Pereira JO and Araujo WL (2000). Endophytic Microorganism: A Review on Insect Control and Recent Advances on Tropical Plants. Electron. J. Biotechnol. Available at [http://www.ejbiotechnology. info/content/vol3/issue1/full/4/index.html].
PMCid:3333147
Bernardi-Wenzel J, Garcia A, Filho CJ, Prioli AJ, et al. (2010). Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol. Res. 43: 375-384.
PMid:21526263
Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJS, et al. (2006). Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J. Microbiol. Biotechnol. 22: 481-486.
http://dx.doi.org/10.1007/s11274-005-9060-x
Crozier J, Thomas SE, Aime MC, Evans HC, et al. (2006). Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathol. 55: 783-791.
http://dx.doi.org/10.1111/j.1365-3059.2006.01446.x
de Souza LA, Moscheta SI, Mourão SMK and Silvério A (2001). Morphology and anatomy of the flowers of Trichilia catigua A. Juss., T. elegans A. Juss. and T. pallida Sw. (Meliaceae). Brazilian Arch. Biol. Technol. 44: 383-394.
http://dx.doi.org/10.1590/S1516-89132001000400008
Ding T, Jiang T, Zhou J, Xu L, et al. (2010). Evaluation of antimicrobial activity of endophytic fungi from Camptotheca acuminata (Nyssaceae). Genet. Mol. Res. 9: 2104-2112.
http://dx.doi.org/10.4238/vol9-4gmr809
PMid:21038296
Durán EL, Ploper LD, Ramallo JC, Grandi RAP, et al. (2005). The foliar fungal endophytes of Citrus limon in Argentina. Canadian J. Bot. 83: 350-355.
http://dx.doi.org/10.1139/b05-009
Gamboa MA and Bayman P (2001). Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33: 352-360.
Garcez FR, Garcez WS, Rodrigues ED and Pott VJ (1996). Seco-protolimonoids from Trichilia elegans ssp. elegans. Phytochemistry 42: 1399-1403.
http://dx.doi.org/10.1016/0031-9422(96)00141-0
Kern ME and Blevins KS (1999). Micologia Médica. 2° Edição. Editora Premier, São Paulo, 256.
Kuo HC, Su YL, Yang HL and Chen TY (2005). Identification of Chinese medicinal fungus Cordyceps sinensis by PCR-single-stranded conformation polymorphism and phylogenetic relationship. J. Agric. Food Chem. 53: 3963-3968.
http://dx.doi.org/10.1021/jf0482562
PMid:15884824
Lacap D, Hyde KD and Liew ECY (2003). An evaluation of the fungal 'morphotype' concept based on ribosomal DNA sequences. Fungal Divers. 12: 53-66.
Murali TS, Suryanarayanan TS and Geeta R (2006). Endophytic phomopsis species: host range and implications for diversity estimates. Can. J. Microbiol. 52: 673-680.
http://dx.doi.org/10.1139/w06-020
PMid:16917524
Pamphile JA and Azevedo JL (2002). Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays L.). World J. Microbiol. Biotechnol. 18: 391-396.
http://dx.doi.org/10.1023/A:1015507008786
Pimentel IC, Kuczkowski FR, Chime MA and Auer CG (2006). Fungos endofíticos em folhas de erva-mate (Ilex paraguariensis A. St.-Hil.). Floresta 36: 1.
Read DJ, Ducket JG, Francis R, Ligron R, et al. (2000). Symbiotic fungal associations in 'lower' land plants. Philos. Trans. R. Soc. Lond B Biol. Sci. 355: 815-830.
http://dx.doi.org/10.1098/rstb.2000.0617
PMid:10905611 PMCid:1692782
Saikkonen K, Wali P, Helander M and Faeth SH (2004). Evolution of endophyte-plant symbioses. Trends Plant Sci. 9: 275-280.
http://dx.doi.org/10.1016/j.tplants.2004.04.005
PMid:15165558
Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
PMid:3447015
Sakayaroj J, Preedanon S, Supaphon O and Jones EBG (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers. 42: 27-45.
http://dx.doi.org/10.1007/s13225-009-0013-9
Strobel GA (2002). Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol. 22: 315-333.
http://dx.doi.org/10.1080/07388550290789531
PMid:12487423
Tamura K, Peterson D, Peterson N and Stecher G (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. DOI: 10.1093/ molbev/msr121.
White TJ, Bruns TD, Lee S and Taylor JW (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (Innis MA, Gelfand DH, Sninsky JJ and White TJ, eds.). Academic Press, San Diego, 315-322.
PMid:1696192