Publications

Found 13 results
Filters: Author is L. Zhou  [Clear All Filters]
2013
L. Zhou, Wang, H. M., Ju, Z. H., Zhang, Y., Huang, J. M., Qi, C., Hou, M. H., An, L. G., Zhong, J. F., and Wang, C. F., Association of novel single nucleotide polymorphisms of the CXCR1 gene with the milk performance traits of Chinese native cattle, vol. 12, pp. 2725-2739, 2013.
W. Liu, Yao, Y. F., Zhou, L., Ni, Q. Y., and Xu, H. L., Evolutionary analysis of the short-type peptidoglycan-recognition protein gene (PGLYRP1) in primates, vol. 12, pp. 453-462, 2013.
Dimopoulos G, Christophides GK, Meister S, Schultz J, et al. (2002). Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl. Acad. Sci. U. S. A. 99: 8814-8819. http://dx.doi.org/10.1073/pnas.092274999 PMid:12077297 PMCid:124381   Dziarski R (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol. Life Sci. 60: 1793-1804. http://dx.doi.org/10.1007/s00018-003-3019-6 PMid:14523544   Dziarski R (2004). Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40: 877-886. http://dx.doi.org/10.1016/j.molimm.2003.10.011 PMid:14698226   Fornhem C, Peterson CG and Alving K (1996). Isolation and characterization of porcine cationic eosinophil granule proteins. Int. Arch. Allergy Immunol. 110: 132-142. http://dx.doi.org/10.1159/000237277 PMid:8645990   Garver LS, Wu J and Wu LP (2006). The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 103: 660-665. http://dx.doi.org/10.1073/pnas.0506182103 PMid:16407137 PMCid:1334640   Gelius E, Persson C, Karlsson J and Steiner H (2003). A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun. 306: 988-994. http://dx.doi.org/10.1016/S0006-291X(03)01096-9   Ghosh A, Lee S, Dziarski R and Chakravarti S (2009). A novel antimicrobial peptidoglycan recognition protein in the cornea. Invest. Ophthalmol. Vis. Sci. 50: 4185-4191. http://dx.doi.org/10.1167/iovs.08-3040 PMid:19387073 PMCid:3052780   Girardin SE and Philpott DJ (2004). Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol. 34: 1777-1782. http://dx.doi.org/10.1002/eji.200425095 PMid:15214025   Goodman M, Porter CA, Czelusniak J, Page SL, et al. (1998). Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol. Phylogenet. Evol. 9: 585-598. http://dx.doi.org/10.1006/mpev.1998.0495 PMid:9668008   Guan R, Malchiodi EL, Wang Q, Schuck P, et al. (2004). Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Iα. J. Biol. Chem. 279: 31873-31882. http://dx.doi.org/10.1074/jbc.M404920200 PMid:15140887   Guan R, Wang Q, Sundberg EJ and Mariuzza RA (2005). Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 Å resolution. J. Mol. Biol. 347: 683-691. http://dx.doi.org/10.1016/j.jmb.2005.01.070 PMid:15769462   Hasegawa M, Kishino H and Yano T (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160-174. http://dx.doi.org/10.1007/BF02101694 PMid:3934395   Hoffmann JA and Reichhart JM (2002). Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3: 121-126. http://dx.doi.org/10.1038/ni0202-121 PMid:11812988   Janeway CA Jr and Medzhitov R (2002). Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359 PMid:11861602   Kaneko T, Golenbock D and Silverman N (2005). Peptidoglycan recognition by the Drosophila Imd pathway. J. Endotoxin. Res. 11: 383-389. PMid:16303095   Kang D, Liu G, Lundstrom A, Gelius E, et al. (1998). A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. U. S. A. 95: 10078-10082. http://dx.doi.org/10.1073/pnas.95.17.10078 PMid:9707603 PMCid:21464   Kashyap DR, Wang M, Liu LH, Boons GJ, et al. (2011). Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat. Med. 17: 676-683. http://dx.doi.org/10.1038/nm.2357 PMid:21602801 PMCid:3176504   Lackner AA and Veazey RS (2007). Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu.Rev. Med. 58: 461-476. http://dx.doi.org/10.1146/annurev.med.58.082405.094316 PMid:17217334   Liu C, Xu Z, Gupta D and Dziarski R (2001). Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276: 34686-34694. http://dx.doi.org/10.1074/jbc.M105566200 PMid:11461926   McCarthy C (1998). Chromas 1.45. School of Health Science. Griffith University, Southport, Queensland.   Mellroth P and Steiner H (2006). PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350: 994-999. http://dx.doi.org/10.1016/j.bbrc.2006.09.139 PMid:17046713   Rehman A, Taishi P, Fang J, Majde JA, et al. (2001). The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation. Cytokine 13: 8-17. http://dx.doi.org/10.1006/cyto.2000.0800 PMid:11145837   Schleifer KH and Kandler O (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477. PMid:4568761 PMCid:408328   Seggewiss R, Lore K, Guenaga FJ, Pittaluga S, et al. (2007). Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110: 441-449. http://dx.doi.org/10.1182/blood-2006-12-065623 PMid:17374737 PMCid:1975851   Sharma P, Singh N, Sinha M, Sharma S, et al. (2008). Crystal structure of the peptidoglycan recognition protein at 1.8 Å resolution reveals dual strategy to combat infection through two independent functional homodimers. J. Mol. Biol. 378: 923-932. http://dx.doi.org/10.1016/j.jmb.2008.03.018 PMid:18395744   Shi J, Xi H, Wang Y, Zhang C, et al. (2003). Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units. Proc. Natl. Acad. Sci. U. S. A. 100: 8331-8336. http://dx.doi.org/10.1073/pnas.1332748100 PMid:12826612 PMCid:166229   Takeda K and Akira S (2005). Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14. http://dx.doi.org/10.1093/intimm/dxh186 PMid:15585605   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Tydell CC, Yount N, Tran D, Yuan J, et al. (2002). Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J. Biol. Chem. 277: 19658-19664. http://dx.doi.org/10.1074/jbc.M200659200 PMid:11880375   Tydell CC, Yuan J, Tran P and Selsted ME (2006). Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J. Immunol. 176: 1154-1162. PMid:16394004   Wang ZM, Li X, Cocklin RR, Wang M, et al. (2003). Human peptidoglycan recognition protein-L is an N-acetylmuramoyl- L-alanine amidase. J. Biol. Chem. 278: 49044-49052. http://dx.doi.org/10.1074/jbc.M307758200 PMid:14506276   Werner T, Liu G, Kang D, Ekengren S, et al. (2000). A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 97: 13772-13777. http://dx.doi.org/10.1073/pnas.97.25.13772 PMid:11106397 PMCid:17651   Wooding S (2011). Signatures of natural selection in a primate bitter taste receptor. J. Mol. Evol. 73: 257-265. http://dx.doi.org/10.1007/s00239-011-9481-0 PMid:22218679   Xu HL and Su B (2005). Genetic evidence of a strong functional constraint of neurotrypsin during primate evolution. Cytogenet. Genome Res. 108: 303-309. http://dx.doi.org/10.1159/000081523 PMid:15627749   Yang Z (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. http://dx.doi.org/10.1093/molbev/msm088 PMid:17483113   Yoshida H, Kinoshita K and Ashida M (1996). Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271: 13854-13860. http://dx.doi.org/10.1074/jbc.271.23.13854 PMid:8662762   Zhang YW, Ryder OA and Zhang YP (1999). Sequence evolution of the CCR5 chemokine receptor gene in primates. Mol. Biol. Evol. 16: 1145-1154. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026205 PMid:10486970
L. Zhou, Wang, L. M., Song, H. M., Shen, Y. Q., Xu, W. J., Xu, J. H., Liu, Y., Yan, W. W., and Jiang, J. F., Expression profiling analysis of hypoxic pulmonary disease, vol. 12, pp. 4162-4170, 2013.
2012
Y. Yang, Huang, J. M., Ju, Z. H., Li, Q. L., Zhou, L., Li, R. L., Li, J. B., Shi, F. X., Zhong, J. F., and Wang, C. F., Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle, vol. 11, pp. 2909-2916, 2012.
Andersson L, Lunden A, Sigurdardottir S, Davies CJ, et al. (1988). Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27: 273-280. http://dx.doi.org/10.1007/BF00376122 PMid:2894354   Ast G (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5: 773-782. http://dx.doi.org/10.1038/nrg1451 PMid:15510168   Awdeh ZL and Alper CA (1980). Inherited structural polymorphism of the fourth component of human complement. Proc. Natl. Acad. Sci. U. S. A. 77: 3576-3580. http://dx.doi.org/10.1073/pnas.77.6.3576 PMid:6932037 PMCid:349660   Belt KT, Yu CY, Carroll MC and Porter RR (1985). Polymorphism of human complement component C4. Immunogenetics 21: 173-180. http://dx.doi.org/10.1007/BF00364869 PMid:3838531   Bradley A (2002). Bovine mastitis: an evolving disease. Vet. J. 164: 116-128. http://dx.doi.org/10.1053/tvjl.2002.0724 PMid:12359466   Chacko E and Ranganathan S (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genomics 10 (Suppl 3): S11. http://dx.doi.org/10.1186/1471-2164-10-S3-S11 PMid:19958474 PMCid:2788363   Cox BJ and Robins DM (1988). Tissue-specific variation in C4 and Slp gene regulation. Nucleic Acids Res. 16: 6857-6870. http://dx.doi.org/10.1093/nar/16.14.6857 PMid:3405752 PMCid:338338   Dahl MR, Thiel S, Matsushita M, Fujita T, et al. (2001). MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15: 127-135. http://dx.doi.org/10.1016/S1074-7613(01)00161-3   Dodds AW and Law SK (1990). The complement component C4 of mammals. Biochem. J. 265: 495-502. PMid:2302180 PMCid:1136911   Galante PA, Sakabe NJ, Kirschbaum-Slager N and de Souza SJ (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA 10: 757-765. http://dx.doi.org/10.1261/rna.5123504 PMid:15100430 PMCid:1370565   Garcia-Blanco MA, Baraniak AP and Lasda EL (2004). Alternative splicing in disease and therapy. Nat. Biotechnol. 22: 535-546. http://dx.doi.org/10.1038/nbt964 PMid:15122293   Giles CM (1984). A new genetic variant for Chido. Vox Sang. 46: 149-156. http://dx.doi.org/10.1111/j.1423-0410.1984.tb00067.x PMid:6710967   Guerra-Junior G, Grumach AS, de Lemos-Marini SH, Kirschfink M, et al. (2008). Complement 4 phenotypes and genotypes in Brazilian patients with classical 21-hydroxylase deficiency. Clin. Exp. Immunol. 155: 182-188. http://dx.doi.org/10.1111/j.1365-2249.2008.03838.x PMid:19137635 PMCid:2675248   Günther J, Koczan D, Yang W, Nurnberg G, et al. (2009). Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge with Escherichia coli. Vet. Res. 40: 31. http://dx.doi.org/10.1051/vetres/2009014 PMid:19321125 PMCid:2695127   Hull J, Campino S, Rowlands K, Chan MS, et al. (2007). Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 3: e99. http://dx.doi.org/10.1371/journal.pgen.0030099 PMid:17571926 PMCid:1904363   Ju Z, Wang C, Li Q, Hou M, et al. (2011). Alternative splicing and mRNA expression analysis of bovine SLAMF7 gene in healthy and mastitis mammary tissues. Mol. Biol. Rep. DOI: 10.1007/s11033-011-1198-z. http://dx.doi.org/10.1007/s11033-011-1198-z   Keren H, Lev-Maor G and Ast G (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11: 345-355. http://dx.doi.org/10.1038/nrg2776 PMid:20376054   Kim E, Magen A and Ast G (2007). Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35: 125-131. http://dx.doi.org/10.1093/nar/gkl924 PMid:17158149 PMCid:1802581   Larionov A, Krause A and Miller W (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. http://dx.doi.org/10.1186/1471-2105-6-62 PMid:15780134 PMCid:1274258   Le Hir H, Charlet-Berguerand N, de Franciscis V and Thermes C (2002). 5'-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology 63: 84-91. http://dx.doi.org/10.1159/000065725 PMid:12187076   Liu HX, Cartegni L, Zhang MQ and Krainer AR (2001). A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27: 55-58. http://dx.doi.org/10.1038/83762 PMid:11137998   Morera AL, Henry M, Garcia-Hernandez A and Fernandez-Lopez L (2007). Acute phase proteins as biological markers of negative psychopathology in paranoid schizophrenia. Actas Esp. Psiquiatr. 35: 249-252. PMid:17592787   Pattanakitsakul S, Zheng JH, Natsuume-Sakai S, Takahashi M, et al. (1992). Aberrant splicing caused by the insertion of the B2 sequence into an intron of the complement C4 gene is the basis for low C4 production in H-2k mice. J. Biol. Chem. 267: 7814-7820. PMid:1373139   Petri M, Watson R, Winkelstein JA and McLean RH (1993). Clinical expression of systemic lupus erythematosus in patients with C4A deficiency. Medicine 72: 236-244. http://dx.doi.org/10.1097/00005792-199307000-00003 PMid:8341140   Rainard P and Poutrel B (1995). Deposition of complement components on Streptococcus agalactiae in bovine milk in the absence of inflammation. Infect. Immun. 63: 3422-3427. PMid:7642272 PMCid:173471   Rio DC (1991). Regulation of Drosophila P element transposition. Trends Genet. 7: 282-287. PMid:1662417   Rupp R and Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res. 34: 671-688. http://dx.doi.org/10.1051/vetres:2003020 PMid:14556700   Vergani D, Johnston C, Abdullah N and Barnett AH (1983). Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br. Med. J. 286: 926-928. http://dx.doi.org/10.1136/bmj.286.6369.926   Wang Z, Zhang S and Wang G (2008). Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25: 264-270. http://dx.doi.org/10.1016/j.fsi.2008.05.010 PMid:18657447   Witte DP, Welch TR and Beischel LS (1991). Detection and cellular localization of human C4 gene expression in the renal tubular epithelial cells and other extrahepatic epithelial sources. Am. J. Pathol. 139: 717-724. PMid:1928296 PMCid:1886325   Yang Y, Chung EK, Zhou B, Blanchong CA, et al. (2003). Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J. Immunol. 171: 2734-2745. PMid:12928427   Yu CY, Belt KT, Giles CM, Campbell RD, et al. (1986). Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J. 5: 2873-2881. PMid:2431902 PMCid:1167237
C. - L. Zhao, Wu, R., Liu, L., Li, F. - D., Zhang, X. - L., Wang, C., Wang, F., Diao, X. - L., Guan, H. - W., Wang, X., and Zhou, L., Ovine prion protein genotype frequencies in northwestern China, vol. 11, pp. 1671-1681, 2012.
Andreoletti O, Morel N, Lacroux C, Rouillon V, et al. (2006). Bovine spongiform encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. J. Gen. Virol. 87: 1043-1046. http://dx.doi.org/10.1099/vir.0.81318-0 PMid:16528056 Babar ME, Abdullah M, Nadeem A and Haq AU (2009). Prion protein gene polymorphisms in four goat breeds of Pakistan. Mol. Biol. Rep. 36: 141-144. http://dx.doi.org/10.1007/s11033-007-9162-7 PMid:17934795 Baylis M, Goldmann W, Houston F, Cairns D, et al. (2002). Scrapie epidemic in a fully PrP-genotyped sheep flock. J. Gen. Virol. 83: 2907-2914. PMid:12388827 Belt PB, Muileman IH, Schreuder BE, Bos-de Ruijter J, et al. (1995). Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76: 509-517. http://dx.doi.org/10.1099/0022-1317-76-3-509 PMid:7897344 Buitkamp J and Semmer J (2004). A robust, low- to medium-throughput prnp genotyping system in sheep. BMC Infect. Dis. 4: 30. http://dx.doi.org/10.1186/1471-2334-4-30 PMid:15345029 PMCid:517712 De Vries F, Borchers N, Hamann H, Drogemuller C, et al. (2004). Associations between the prion protein genotype and performance traits of meat breeds of sheep. Vet. Rec. 155: 140-143. http://dx.doi.org/10.1136/vr.155.5.140 PMid:15338706 Goldmann W, Houston F, Stewart P, Perucchini M, et al. (2006). Ovine prion protein variant A136 R154 L168 Q171 increases resistance to experimental challenge with bovine spongiform encephalopathy agent. J. Gen. Virol. 87: 3741-3745. http://dx.doi.org/10.1099/vir.0.82083-0 PMid:17098993 Hagenaars TJ, Donnelly CA and Ferguson NM (2006). Epidemiological analysis of data for scrapie in Great Britain. Epidemiol. Infect. 134: 359-367. http://dx.doi.org/10.1017/S0950268805004966 PMid:16490141 PMCid:2870388 Humeny A, Schiebel K, Seeber S and Becker CM (2002). Identification of polymorphisms within the bovine prion protein gene (Prnp) by DNA sequencing and genotyping by MALDI-TOF-MS. Neurogenetics 4: 59-60. http://dx.doi.org/10.1007/s10048-001-0126-0 PMid:12030333 Hunter N (1997). Molecular Biology and Genetics of Scrapie in Sheep. In: The Genetics of Sheep. (Piper L and Ruvinsky A, eds.). CAB International, Wallingford, 225-240. PMid:9223132 Hunter N, Foster JD, Benson G and Hope J (1991). Restriction fragment length polymorphisms of the scrapie-associated fibril protein (PrP) gene and their association with susceptibility to natural scrapie in British sheep. J. Gen. Virol. 72: 1287-1292. http://dx.doi.org/10.1099/0022-1317-72-6-1287 PMid:1675248 Hunter N, Goldmann W, Benson G, Foster JD, et al. (1993). Swaledale sheep affected by natural scrapie differ significantly in PrP genotype frequencies from healthy sheep and those selected for reduced incidence of scrapie. J. Gen. Virol. 74: 1025-1031. http://dx.doi.org/10.1099/0022-1317-74-6-1025 PMid:8099602 Hunter N, Moore L, Hosie BD, Dingwall WS, et al. (1997). Association between natural scrapie and PrP genotype in a flock of Suffolk sheep in Scotland. Vet. Rec. 140: 59-63. http://dx.doi.org/10.1136/vr.140.3.59 PMid:9023905 Ishiguro N, Shinagawa M, Onoe S, Yamanouchi K, et al. (1998). Rapid analysis of allelic variants of the sheep PrP gene by oligonucleotide probes. Microbiol. Immunol. 42: 579-582. PMid:9776400 Lan Z, Wang ZL, Liu Y and Zhang X (2006). Prion protein gene (PRNP) polymorphisms in Xinjiang local sheep breeds in China. Arch. Virol. 151: 2095-2101. http://dx.doi.org/10.1007/s00705-006-0758-3 PMid:16622593 Langeveld JP, Jacobs JG, Erkens JH, Bossers A, et al. (2006). Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Vet. Res. 2: 19. http://dx.doi.org/10.1186/1746-6148-2-19 PMid:16764717 PMCid:1544330 Lee MA, Manley TR, Glass BC, Anderson RM, et al. (2007). Distribution of prion protein genotypes in breeds of sheep in New Zealand. N. Z. Vet. J. 55: 222-227. http://dx.doi.org/10.1080/00480169.2007.36772 PMid:17928898 Lezmi S, Ronzon F, Bencsik A, Bedin A, et al. (2006). PrP(d) accumulation in organs of ARQ/ARQ sheep experimentally infected with BSE by peripheral routes. Acta Biochim. Pol. 53: 399-405. PMid:16770445 Li YM and Tian B (2002). Chinese little-fat-tail sheep prion protein gene belongs to PrPARH genotype. Sheng Wu Hua Xue. Yu Sheng Wu Wu Li Xue Bao 34: 62-66. Lipsky S, Brandt H, Luhken G and Erhardt G (2008). Analysis of prion protein genotypes in relation to reproduction traits in local and cosmopolitan German sheep breeds. Anim. Reprod. Sci. 103: 69-77. http://dx.doi.org/10.1016/j.anireprosci.2006.12.005 PMid:17204379 Marcos-Carcavilla A, Moreno C, Serrano M, Laurent P, et al. (2010). Polymorphisms in the HSP90AA1 5' flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15: 343-349. http://dx.doi.org/10.1007/s12192-009-0149-2 PMid:19838832 PMCid:3082647 Melchior MB, Windig JJ, Hagenaars TJ, Bossers A, et al. (2010). Eradication of scrapie with selective breeding: are we nearly there? BMC Vet. Res. 6: 24. http://dx.doi.org/10.1186/1746-6148-6-24 PMid:20441587 PMCid:2873516 Sanguinetti CJ, Dias NE and Simpson AJ (1994). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914-921. PMid:7840973 Sawalha RM, Brotherstone S, Man WY, Conington J, et al. (2007). Associations of polymorphisms of the ovine prion protein gene with growth, carcass, and computerized tomography traits in Scottish Blackface lambs. J. Anim. Sci. 85: 632-640. http://dx.doi.org/10.2527/jas.2006-372 PMid:17040947 Sweeney T, Hanrahan JP and O'Doherty E (2007). Is there a relationship between prion protein genotype and ovulation rate and litter size in sheep? Anim. Reprod. Sci. 101: 153-157. http://dx.doi.org/10.1016/j.anireprosci.2006.12.004 PMid:17204381 Tongue SC, Pfeiffer DU, Warner R, Elliott H, et al. (2006). Estimation of the relative risk of developing clinical scrapie: the role of prion protein (PrP) genotype and selection bias. Vet. Rec. 158: 43-50. http://dx.doi.org/10.1136/vr.158.2.43 PMid:16415231 Tranulis MA, Osland A, Bratberg B and Ulvund MJ (1999). Prion protein gene polymorphisms in sheep with natural scrapie and healthy controls in Norway. J. Gen. Virol. 80: 1073-1077. PMid:10211978 Vaccari G, Conte M, Morelli L, Di Guardo G, et al. (2004). Primer extension assay for prion protein genotype determination in sheep. Mol. Cell Probes 18: 33-37. http://dx.doi.org/10.1016/j.mcp.2003.06.001 PMid:15036367 Vitezica ZG, Moreno CR, Lantier F, Lantier I, et al. (2007). Quantitative trait loci linked to PRNP gene controlling health and production traits in INRA 401 sheep. Genet. Sel. Evol. 39: 421-430. http://dx.doi.org/10.1186/1297-9686-39-4-421 PMid:17612481 PMCid:2682820 Vollmert C, Windl O, Xiang W, Rosenberger A, et al. (2006). Significant association of a M129V independent polymorphism in the 5' UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J. Med. Genet. 43: e53. http://dx.doi.org/10.1136/jmg.2006.040931 PMid:17047093 PMCid:2563174 Zhang L, Li N, Fan B, Fang M, et al. (2004). PRNP polymorphisms in Chinese ovine, caprine and bovine breeds. Anim. Genet. 35: 457-461. http://dx.doi.org/10.1111/j.1365-2052.2004.01204.x PMid:15566469 Zhou H, Hickford JG and Fang Q (2005). Technical note: determination of alleles of the ovine PRNP gene using PCR-single-strand conformational polymorphism analysis. J. Anim. Sci. 83: 745-749. PMid:15753327 Zsolnai A, Anton I, Kuhn C and Fesus L (2003). Detection of single-nucleotide polymorphisms coding for three ovine prion protein variants by primer extension assay and capillary electrophoresis. Electrophoresis 24: 634-638. http://dx.doi.org/10.1002/elps.200390074 PMid:12601731