Publications

Found 6 results
Filters: Author is Y. Valle  [Clear All Filters]
2016
I. V. Román-Fernández, Ávila-Castillo, D. F., Cerpa-Cruz, S., Gutiérrez-Ureña, S., Hernández-Bello, J., Padilla-Gutiérrez, J. R., Valle, Y., Ramírez-Dueñas, M. G., Pereira-Suárez, A. L., and Muñoz-Valle, J. F., CD40 functional gene polymorphisms and mRNA expression in rheumatoid arthritis patients from western Mexico, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by funding from the National Council of Science and Technology (CONACYT, grant #180663), CONACYT-México-Universidad de Guadalajara, awarded to J.F. Muñoz-Valle. The funding source had no involvement in any phase of the study. REFERENCESAletaha D, Neogi T, Silman AJ, Funovits J, et al (2010). 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62: 2569-2581. http://dx.doi.org/10.1002/art.27584 Arend WP, Firestein GS, et al (2012). Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat. Rev. Rheumatol. 8: 573-586. http://dx.doi.org/10.1038/nrrheum.2012.134 Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene)et al (2009). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41: 824-828. http://dx.doi.org/10.1038/ng.396 Blanco-Kelly F, Matesanz F, Alcina A, Teruel M, et al (2010). CD40: novel association with Crohn’s disease and replication in multiple sclerosis susceptibility. PLoS One 5: e11520. http://dx.doi.org/10.1371/journal.pone.0011520 Chen F, Hou S, Jiang Z, Chen Y, et al (2012). CD40 gene polymorphisms confer risk of Behcet’s disease but not of Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Rheumatology (Oxford) 51: 47-51. http://dx.doi.org/10.1093/rheumatology/ker345 Chen JM, Guo J, Wei CD, Wang CF, et al (2015). The association of CD40 polymorphisms with CD40 serum levels and risk of systemic lupus erythematosus. BMC Genet. 16: 121. http://dx.doi.org/10.1186/s12863-015-0279-8 Cho CS, Cho ML, Min SY, Kim WU, et al (2000). CD40 engagement on synovial fibroblast up-regulates production of vascular endothelial growth factor. J. Immunol. 164: 5055-5061. http://dx.doi.org/10.4049/jimmunol.164.10.5055 Chomczynski P, Sacchi N, et al (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. http://dx.doi.org/10.1016/0003-2697(87)90021-2 Elgueta R, Benson MJ, de Vries VC, Wasiuk A, et al (2009). Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229: 152-172. http://dx.doi.org/10.1111/j.1600-065X.2009.00782.x Field J, Shahijanian F, Schibeci S, Johnson L, Australia and New Zealand MS Genetics Consortium (ANZgene)et al (2015). The MS risk allele of CD40 is associated with reduced cell-membrane bound expression in antigen presenting cells: implications for gene function. PLoS One 10: e0127080. http://dx.doi.org/10.1371/journal.pone.0127080 García-Bermúdez M, González-Juanatey C, López-Mejías R, Teruel M, et al (2012). Study of association of CD40-CD154 gene polymorphisms with disease susceptibility and cardiovascular risk in Spanish rheumatoid arthritis patients. PLoS One 7: e49214. http://dx.doi.org/10.1371/journal.pone.0049214 Jacobson EM, Concepcion E, Oashi T, Tomer Y, et al (2005). A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146: 2684-2691. http://dx.doi.org/10.1210/en.2004-1617 Kim TY, Park YJ, Hwang JK, Song JY, et al (2003). A C/T polymorphism in the 5′-untranslated region of the CD40 gene is associated with Graves’ disease in Koreans. Thyroid 13: 919-925. http://dx.doi.org/10.1089/105072503322511319 Lee HY, Jeon HS, Song EK, Han MK, et al (2006). CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: evidence of NF-kappaB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum. 54: 1747-1758. http://dx.doi.org/10.1002/art.21873 Lee YH, Bae SC, Choi SJ, Ji JD, et al (2015). Associations between the functional CD40 rs4810485 G/T polymorphism and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Lupus 24: 1177-1183. http://dx.doi.org/10.1177/0961203315583543 Li M, Sun H, Liu S, Yu J, et al (2012). CD40 C/T-1 polymorphism plays different roles in Graves’ disease and Hashimoto’s thyroiditis: a meta-analysis. Endocr. J. 59: 1041-1050. http://dx.doi.org/10.1507/endocrj.EJ12-0126 Liu MF, Chao SC, Wang CR, Lei HY, et al (2001). Expression of CD40 and CD40 ligand among cell populations within rheumatoid synovial compartment. Autoimmunity 34: 107-113. http://dx.doi.org/10.3109/08916930109001958 Liu R, Xu N, Wang X, Shen L, et al (2012). Influence of MIF, CD40, and CD226 polymorphisms on risk of rheumatoid arthritis. Mol. Biol. Rep. 39: 6915-6922. http://dx.doi.org/10.1007/s11033-012-1518-y Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 Martínez-Cortés G, Salazar-Flores J, Fernández-Rodríguez LG, Rubi-Castellanos R, et al (2012). Admixture and population structure in Mexican-Mestizos based on paternal lineages. J. Hum. Genet. 57: 568-574. http://dx.doi.org/10.1038/jhg.2012.67 McInnes IB, Schett G, et al (2011). The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365: 2205-2219. http://dx.doi.org/10.1056/NEJMra1004965 Miller SA, Dykes DD, Polesky HF, et al (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 Orozco G, Eyre S, Hinks A, Ke X, Wellcome Trust Case Control consortium YEAR Consortiumet al (2010). Association of CD40 with rheumatoid arthritis confirmed in a large UK case-control study. Ann. Rheum. Dis. 69: 813-816. http://dx.doi.org/10.1136/ard.2009.109579 Perricone C, Ceccarelli F, Valesini G, et al (2011). An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun. Rev. 10: 599-608. http://dx.doi.org/10.1016/j.autrev.2011.04.021 Peters AL, Stunz LL, Bishop GA, et al (2009). CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21: 293-300. http://dx.doi.org/10.1016/j.smim.2009.05.012 Raychaudhuri S, Remmers EF, Lee AT, Hackett R, et al (2008). Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40: 1216-1223. http://dx.doi.org/10.1038/ng.233 Reparon-Schuijt CC, van Esch WJ, van Kooten C, Schellekens GA, et al (2001). Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. 44: 41-47. http://dx.doi.org/10.1002/1529-0131(200101)44:1<41::AID-ANR6>3.0.CO;2-0 Schmittgen TD, Livak KJ, et al (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101-1108. http://dx.doi.org/10.1038/nprot.2008.73 Shuang C, Dalin L, Weiguang Y, Zhenkun F, et al (2011). Association of CD40 gene polymorphisms with sporadic breast cancer in Chinese Han women of Northeast China. PLoS One 6: e23762. http://dx.doi.org/10.1371/journal.pone.0023762 Sokolova EA, Malkova NA, Korobko DS, Rozhdestvenskii AS, et al (2013). Association of SNPs of CD40 gene with multiple sclerosis in Russians. PLoS One 8: e61032. http://dx.doi.org/10.1371/journal.pone.0061032 Suzuki A, Kochi Y, Okada Y, Yamamoto K, et al (2011). Insight from genome-wide association studies in rheumatoid arthritis and multiple sclerosis. FEBS Lett. 585: 3627-3632. http://dx.doi.org/10.1016/j.febslet.2011.05.025 Tomer Y, Concepcion E, Greenberg DA, et al (2002). A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 12: 1129-1135. http://dx.doi.org/10.1089/105072502321085234 Vazgiourakis VM, Zervou MI, Choulaki C, Bertsias G, et al (2011). A common SNP in the CD40 region is associated with systemic lupus erythematosus and correlates with altered CD40 expression: implications for the pathogenesis. Ann. Rheum. Dis. 70: 2184-2190. http://dx.doi.org/10.1136/ard.2010.146530 Wagner M, Sobczyński M, Bilińska M, Pokryszko-Dragan A, et al (2015). MS risk allele rs1883832T is associated with decreased mRNA expression of CD40. J. Mol. Neurosci. 56: 540-545. http://dx.doi.org/10.1007/s12031-015-0490-0 Wellcome Trust Case Control Consortiumet al (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661-678. http://dx.doi.org/10.1038/nature05911 Yi CQ, Ma CH, Xie ZP, Cao Y, et al (2013). Comparative genome-wide gene expression analysis of rheumatoid arthritis and osteoarthritis. Genet. Mol. Res. 12: 3136-3145. http://dx.doi.org/10.4238/2013.March.11.3  
M. Vázquez-Villamar, Palafox-Sánchez, C. A., Hernández-Bello, J., Muñoz-Valle, J. F., Valle, Y., Cruz, A., Alatorre-Meza, A. I., and Oregon-Romero, E., Frequency distribution of interleukin-10 haplotypes (-1082 A>G, -819 C>T, and -592 C>A) in a Mexican population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by grants provided by CONACYT (Fondo Sectorial SSA/IMSS/ISSSTE-CONACYT, México-Universidad de Guadalajara; Grant #88046 to E. Oregon-Romero and Grant #115567 to C.A. Palafox-Sánchez). REFERENCESAguirre-Beltrán G (1989). La población negra de México, estudio etnohistórico. In: Fondo de Cultura Económica, México D.F. Asadullah K, Sterry W, Volk HD, et al (2003). Interleukin-10 therapy--review of a new approach. Pharmacol. Rev. 55: 241-269. http://dx.doi.org/10.1124/pr.55.2.4 Boiardi L, Casali B, Farnetti E, Pipitone N, et al (2006). Interleukin-10 promoter polymorphisms in giant cell arteritis. Arthritis Rheum. 54: 4011-4017. http://dx.doi.org/10.1002/art.22218 Chen XH, Xiong JH, Ning Y, Wen Y, et al (2013). IL-10 promoter SNPs and susceptibility to leprosy in ethnic groups from southwest China. Genet. Mol. Res. 12: 2876-2885. http://dx.doi.org/10.4238/2013.August.12.3 Çil E, Kumral A, Kanmaz-Özer M, Vural P, et al (2014). Interleukin-10-1082 gene polymorphism is associated with papillary thyroid cancer. Mol. Biol. Rep. 41: 3091-3097. http://dx.doi.org/10.1007/s11033-014-3169-7 Eskdale J, Gallagher G, et al (1995). A polymorphic dinucleotide repeat in the human IL-10 promoter. Immunogenetics 42: 444-445. http://dx.doi.org/10.1007/BF00179416 Excoffier L, Slatkin M, et al (1995). Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12: 921-927. Fei C, Yao XM, Sun Y, Gu XZ, et al (2015). Interleukin-10 polymorphisms associated with susceptibility to acute myeloid leukemia. Genet. Mol. Res. 14: 925-930. http://dx.doi.org/10.4238/2015.February.2.15 Font J, García-Carrasco M, Ramos-Casals M, Aldea AI, et al (2002). The role of interleukin-10 promoter polymorphisms in the clinical expression of primary Sjögren’s syndrome. Rheumatology (Oxford) 41: 1025-1030. http://dx.doi.org/10.1093/rheumatology/41.9.1025 Fragoso JM, Vallejo M, Alvarez-León E, Delgadillo H, et al (2011). Alleles and haplotypes of the interleukin 10 gene polymorphisms are associated with risk of developing acute coronary syndrome in Mexican patients. Cytokine 55: 29-33. http://dx.doi.org/10.1016/j.cyto.2011.03.021 G e I Instituto Nacional de Estadística (2010). Censo General de Población y Vivienda. INEGI, México D.F. Gérard N, Berriche S, Aouizérate A, Diéterlen F, et al (2006). North African Berber and Arab influences in the western Mediterranean revealed by Y-chromosome DNA haplotypes. Hum. Biol. 78: 307-316. http://dx.doi.org/10.1353/hub.2006.0045 Grunberg B (2004). El universo de los conquistadores: resultado de una investigación prosopográfica. In: Signos Históricos, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. 12: 94-118. Hedrich CM, Bream JH, et al (2010). Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol. Res. 47: 185-206. http://dx.doi.org/10.1007/s12026-009-8150-5 Hofmann SR, Rösen-Wolff A, Tsokos GC, Hedrich CM, et al (2012). Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin. Immunol. 143: 116-127. http://dx.doi.org/10.1016/j.clim.2012.02.005 Hua MC, Chao HC, Yao TC, Lai MW, PATCH Study Groupet al (2013). Investigation of interleukin-10 promoter polymorphisms and interleukin-10 levels in children with irritable bowel syndrome. Gut Liver 7: 430-436. http://dx.doi.org/10.5009/gnl.2013.7.4.430 Lander E, Kruglyak L, et al (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241-247. http://dx.doi.org/10.1038/ng1195-241 Lewontin RC, et al (1964). The interaction of selection and linkage. I. general considerations; heterotic models. Genetics 49: 49-67. Lisker R, Ramírez E, Babinsky V, et al (1996). Genetic structure of autochthonous populations of Meso-America: Mexico. Hum. Biol. 68: 395-404. Liu J, Song B, Bai X, Liu W, et al (2010). Association of genetic polymorphisms in the interleukin-10 promoter with risk of prostate cancer in Chinese. BMC Cancer 10: 456. http://dx.doi.org/10.1186/1471-2407-10-456 Meenagh A, Williams F, Ross OA, Patterson C, et al (2002). Frequency of cytokine polymorphisms in populations from western Europe, Africa, Asia, the Middle East and South America. Hum. Immunol. 63: 1055-1061. http://dx.doi.org/10.1016/S0198-8859(02)00440-8 Mege JL, Meghari S, Honstettre A, Capo C, et al (2006). The two faces of interleukin 10 in human infectious diseases. Lancet Infect. Dis. 6: 557-569. http://dx.doi.org/10.1016/S1473-3099(06)70577-1 Miller SA, Dykes DD, Polesky HF, et al (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 Mocellin S, Panelli MC, Wang E, Nagorsen D, et al (2003). The dual role of IL-10. Trends Immunol. 24: 36-43. http://dx.doi.org/10.1016/S1471-4906(02)00009-1 Mok CC, Lanchbury JS, Chan DW, Lau CS, et al (1998). Interleukin-10 promoter polymorphisms in Southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum. 41: 1090-1095. http://dx.doi.org/10.1002/1529-0131(199806)41:6<1090::AID-ART16>3.0.CO;2-6 Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A, et al (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19: 683-765. http://dx.doi.org/10.1146/annurev.immunol.19.1.683 Ouyang W, Rutz S, Crellin NK, Valdez PA, et al (2011). Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29: 71-109. http://dx.doi.org/10.1146/annurev-immunol-031210-101312 Pestka S, Krause CD, Sarkar D, Walter MR, et al (2004). Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 22: 929-979. http://dx.doi.org/10.1146/annurev.immunol.22.012703.104622 Qi M, Liu DM, Pan LL, Lin YX, et al (2014). Interleukin-10 gene -592C>A polymorphism and susceptibility to gastric cancer. Genet. Mol. Res. 13: 8954-8961. http://dx.doi.org/10.4238/2014.October.31.10 Qin B, Wang J, Liang Y, Yang Z, et al (2013). The association between TNF-α, IL-10 gene polymorphisms and primary Sjögren’s syndrome: a meta-analysis and systemic review. PLoS One 8: e63401. http://dx.doi.org/10.1371/journal.pone.0063401 Rangel-Villalobos H, Muñoz-Valle JF, González-Martín A, Gorostiza A, et al (2008). Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am. J. Phys. Anthropol. 135: 448-461. http://dx.doi.org/10.1002/ajpa.20765 Rubi-Castellanos R, Martínez-Cortés G, Muñoz-Valle JF, González-Martín A, et al (2009). Pre-Hispanic Mesoamerican demography approximates the present-day ancestry of Mestizos throughout the territory of Mexico. Am. J. Phys. Anthropol. 139: 284-294. http://dx.doi.org/10.1002/ajpa.20980 Santos AR, Suffys PN, Vanderborght PR, Moraes MO, et al (2002). Role of tumor necrosis factor-alpha and interleukin-10 promoter gene polymorphisms in leprosy. J. Infect. Dis. 186: 1687-1691. http://dx.doi.org/10.1086/345366 Saraiva M, O’Garra A, et al (2010). The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10: 170-181. http://dx.doi.org/10.1038/nri2711 Scarpelli D, Cardellini M, Andreozzi F, Laratta E, et al (2006). Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in caucasian italian subjects. Diabetes 55: 1529-1533. http://dx.doi.org/10.2337/db06-0047 Schurr TG, Sherry ST, et al (2004). Mitochondrial DNA and Y chromosome diversity and the peopling of the Americas: evolutionary and demographic evidence. Am. J. Hum. Biol. 16: 420-439. http://dx.doi.org/10.1002/ajhb.20041 Shpak M and Gavrilets S (2001). Population genetics: Multilocus. eLS, John Wiley and Sons, Chichester. Suárez A, Castro P, Alonso R, Mozo L, et al (2003). Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. Transplantation 75: 711-717. http://dx.doi.org/10.1097/01.TP.0000055216.19866.9A Vargas-Alarcon G, Ramírez-Bello J, Juárez-Cedillo T, Ramírez-Fuentes S, et al (2012). Distribution of the IL-1RN, IL-6, IL-10, INF-γ, and TNF-α Gene Polymorphisms in the Mexican Population. Genet. Test. Mol. Biomarkers 16: 1246-1253. http://dx.doi.org/10.1089/gtmb.2012.0100 Ying B, Shi Y, Pan X, Song X, et al (2011). Association of polymorphisms in the human IL-10 and IL-18 genes with rheumatoid arthritis. Mol. Biol. Rep. 38: 379-385. http://dx.doi.org/10.1007/s11033-010-0119-x Yu YF, Han ZG, Guo WB, Zhang GJ, et al (2015). Interleukin-10 polymorphisms and nasopharyngeal carcinoma risk: a meta-analysis. Genet. Mol. Res. 14: 18945-18957. http://dx.doi.org/10.4238/2015.December.29.1