Found 15 results
Filters: Author is F. Zhang  [Clear All Filters]
F. Zhang, Ge, Y. Y., Wang, W. Y., Shen, X. L., and Yu, X. Y., Assessing genetic divergence in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism markers, vol. 11, pp. 4169-4178, 2012.
Abdel-Mawgood AL, Ahmed MMM and Ali BA (2006). Applification of molecular markers for hybrids maize (Zea mays L.) identification. J. Food Agric. Environ. 4: 176-178.   Barfuss MH, Samuel R, Till W and Stuessy TF (2005). Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am. J. Bot. 92: 337-351. PMid:21652410   Bharathi LK, Vinod, Das AB, Ghosh N, et al. (2011). Cytomorphological and molecular characterization of interspecific F1 hybrid of Momordica dioica Roxb. x Momordica subangulata subsp. Renigera (G. Don) de Wilde. Afr. J. Agric. Res. 6: 2982-2990.   Bianco CL, Farnández JA, Migliaro D, Crinò P, et al. (2011). Identification of F1 hybrids of artichoke by ISSR markers and morphological analysis. Mol. Breed. 27: 157-170.   Boisselier-Dubayle MC, Leblois R, Samadi S, Lambourdiere J, et al. (2010). Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana - a test of the forest refuge hypothesis. Ecography 33: 175-184.   Dabkevičiene G, Paplauskienė V and Pašakinskienė I (2008). Assessment of the agronomic utility of interspecific hybrids Trifolim Pratense L. x T. diffusum Ehrh. and confirmation of their hybridity with ISSR markers. J. Food Agric. Environ. 6: 187-190.   Dhillon RS, Hooda MS, Jattan M, Chawla V, et al. (2009). Development and molecular characterization of interspecific hybrids of Jatropha curcas x J. integerrima. Indian J. Biotechnol. 8: 384-390.   Divakaran M, Babu KN, Ravindran PN and Peter KV (2006). Interspecific hybridization in vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers. Sci. Hortic. 108: 414-422.   Fu J, Peng ZJ, Cai XD and Guo WW (2011). Regeneration and molecular characterization of interspecific somatic hybrids between Satsuma mandarin and two seedy sweet oranges for scion improvement. Plant Breed. 130: 287-290.   Han XY, Wang LS, Shu QY, Liu ZA, et al. (2008). Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers. Biochem. Genet. 46: 162-179. PMid:18224436   Hao Q, Liu ZA, Shu QY, Zhang R, et al. (2008). Studies on Paeonia cultivars and hybrids identification based on SRAP analysis. Hereditas 145: 38-47. PMid:18439232   Hauser LA and Crovello TJ (1982). Numerical analysis of generic relationships in the Thelypodieae (Brossicaceae). Syst. Bot. 7: 249-268.   Izquierdo LY and Pinero D (2000). High genetic diversity in the only known population of Aechmea tuitensis (Bromeliaceae). Aust. J. Bot. 48: 645-650.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461.   Li G, Gao M, Yang B and Quiros CF (2003). Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107: 168-180. PMid:12835942   Liu K and Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. PMid:15705655   Liu L, Liu G and Gong Y (2007). Evaluation of genetic purity of F1 hybrid seeds in cabbage with RAPD, ISSR, SRAP, and SSR markers. Hortscience 42: 724-727.   Mishra MK, Suresh N, Bhat AM, Suryaprakash N, et al. (2011). Genetic molecular analysis of Coffea arabica (Rubiaceae) hybrids using SRAP markers. Rev. Biol. Trop. 59: 607-617. PMid:21717853   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325. PMid:7433111 PMCid:324241   Oliveira RP, Aguilar-Vildoso CI and Machado MA (2003). Genetic divergence among hybrids of "Cravo" mandarin with "Pêra" sweet orange. Sci. Agric. 60: 115-118.   Palma-Silva C, Lexer C, Paggi GM, Barbara T, et al. (2009). Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103: 503-512. PMid:19738634   Prevost A and Wilkinson MJ (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107-112.   Rohlf FJ (2005). NTSYSpc Numerical Taxonomy and Multivariate Analysis System. Version 2.2. Exeter Software, New York. PMid:16270455   Saxena RK, Sexena K and Varshney RK (2010). Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]. Mol. Breed. 26: 371-380.   Smith JF, Burke CC and Wagner WL (1996). Interspecific hybridization in natural populations of Cyrtandra (Gesneriaceae) on the Hawaiian Islands: evidences from RAPD markers. Plant Syst. Evol. 200: 61-77.   Sousa GM, Wanderley MGL and Alves M (2008). Inflorescence architecture in Brazilian species of Aechmea subgenus Chevaliera (Bromeliaceae - Bromelioideae). Bot. J. Linn. Soc. 158: 584-592.   Tantasawat P, Trongchuen J, Prajongjai T, Jenweerawat S, et al. (2011). SSR analysis of soybean (Glycine max (L.) Merr.) genetic relationship and variety identification in Thailand. Aust. J. Crop Sci. 5: 283-290.   Vervaeke I, Wouters J, Stichelbout L, Londers E, et al. (2003). Inheritance of spineless leaves in Aechmea (Bromeliaceae). Euphytica 134: 47-49.   Yeh F (2000). Popgene 1.32. Available at []. Accessed January 20, 2012.   Zhang F, Chen S, Chen F, Fang W, et al. (2011). SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27: 11-23.
M. Sun, Jiang, K., Zhang, F., Zhang, D., Shen, A., Jiang, M., Shen, X., and Ma, L., Effects of various salinities on Na+-K+-ATPase, Hsp70 and Hsp90 expression profiles in juvenile mitten crabs, Eriocheir sinensis, vol. 11, pp. 978-986, 2012.
Beck FX, Neuhofer W and Muller E (2000). Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am. J. Physiol. Ren. Physiol. 279: F203-F215. PMid:10919839 Chiang HL, Terlecky SR, Plant CP and Dice JF (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382-385. PMid:2799391 Deane EE, Kelly SP, Luk JC and Woo NY (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar. Biotechnol. 4: 193-205. Ding S, Wang F, Dong S and Gao Q (2009). Effects of salinity fluctuation amplitudes on growth, osmolarity, Na+-K+- ATPase activity and Hsp70 of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Chin. J. Oceanol. Limnol. 27: 723-728. Feder ME and Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. PMid:10099689 Harris RR and Santos MCF (1993). Sodium uptake and transport (Na+ + K+) ATPase changes following Na+ depletion and low salinity acclimation in the mangrove crab Ucides cordatus (L.). Comp. Biochem. Physiol. 105: 35-42. Herborg LM, Rushton SP, Clare AS and Bentley MG (2003). Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia 503: 21-28. Holliday CW (1985). Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab, Uca pugnax. J. Exp. Zool. 233: 199-208. Kim CH and Hwang SG (1995). The complete larval development of the mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Decapoda, Brachyura, Grapsidae) reared in the laboratory and a key to the known zoeae of the Varuninae. Crustaceana 68: 793-812. Mantel LH and Farmer LL (1983). Osmotic and Ionic Regulation. In: The Biology of Crustacea (Bliss DE and Mantel LH, eds.). Academic Press, London, 54-126. Montú M, Anger K and Bakker C (1996). Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgol. Meeresunters 50: 223-252. Neufeld GJ, Holliday CW and Pritchard JB (1980). Salinity adaption of gill Na, K-ATPase in the blue crab, Callinectes sapidus. J. Exp. Zool. 211: 215-224. Pan F, Zarate JM, Tremblay GC and Bradley TM (2000). Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. J. Exp. Zool. 287: 199-212.<199::AID-JEZ2>3.0.CO;2-3 Pan LQ and Luan ZH (2005). The effects of salinity on development and Na+/K+-ATPase activity of Marsupenaeus japonicus postlarvae. Acta Hydrobiol. Sin. 29: 699-703. Péqueux A, Gilles R and Marshall WS (1988). NaCl Transport in Gills and Related Structures. In: Advances in Comparative and Environmental Physiology (Greger R, ed.). Springer, Berlin, 1-73. Siebers D, Leweck K, Markus H and Winkler A (1982). Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar. Biol. 69: 37-43. Skou JC and Esmann M (1992). The Na, K-ATPase. J. Bioenerg. Biomembr. 24: 249-261. PMid:1328174 Spees JL, Chang SA, Snyder MJ and Chang ES (2002). Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol. Bull. 203: 331-337. PMid:12480723 Torres G, Charmantier-Daures M, Chifflet S and Anger K (2007). Effects of long-term exposure to different salinities on the location and activity of Na+-K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147: 460-465. Towle DW (1981). Transport-related ATPases as probes of tissue function in three terrestrial crabs of Palau. J. Exp. Zool. 218: 89-95. Towle DW (1997). Molecular approaches to understanding salinity adaptation of estuarine animals. Am. Zool. 37: 575-584. Towle DW, Palmer GE and Harris JL III (1976). Role of gill Na+, K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool. 196: 315-322. Welch WJ (1993). How cells respond to stress. Sci. Am. 268: 56-64. PMid:8097593 Whiteley NM, Scott JL, Breeze SJ and McCann L (2001). Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204: 1003-1011. PMid:11171423
F. Zhang, Yang, Y., Hu, D., Lei, H., and Wang, Y., Lack of an association between TSC gene Arg904Gln polymorphisms and essential hypertension risk based on a meta-analysis, vol. 11, pp. 3511-3517, 2012.
Capewell S, Ford ES, Croft JB, Critchley JA, et al. (2010). Cardiovascular risk factor trends and potential for reducing coronary heart disease mortality in the United States of America. Bull. World Health Organ. 88: 120-130. PMid:20428369 PMCid:2814476   Chang PY, Zhao LG and Su XL (2011). Association of TSC gene variants and hypertension in Mongolian and Han populations. Genet. Mol. Res. 10: 902-909. PMid:21644207   Fu L, Zhao Y, Wu X, Liu H, et al. (2011). CYP7A1 genotypes and haplotypes associated with hypertension in an obese Han Chinese population. Hypertens. Res. 34: 722-727. PMid:21346769   Glorioso N, Filigheddu F, Troffa C, Soro A, et al. (2001). Interaction of a(1)-Na,K-ATPase and Na,K,2Cl-cotransporter genes in human essential hypertension. Hypertension 38: 204-209. PMid:11509477   Hasi T, Hao L, Yang L and Su XL (2011). Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study. Genet. Mol. Res. 10: 537-543. PMid:21476199   Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, et al. (2011). Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57: 903-910. PMid:21444836 PMCid:3099407   Little J, Bradley L, Bray MS, Clyne M, et al. (2002). Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. Am. J. Epidemiol. 156: 300-310. PMid:12181099   Luo F, Wang Y, Wang X, Sun K, et al. (2009). A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension 54: 796-801. PMid:19635985   Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127. PMid:15480096   Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaClcotransporter in gitelman's syndrome and primary hypertension. Hypertension 36: 389-394. PMid:10988270   Niu W, Wu S, Zhang Y, Li W, et al. (2010). Validation of genetic association in apelin-AGTRL1 system with hypertension in a larger Han Chinese population. J. Hypertens. 28: 1854-1861. PMid:20485192   Plotkin MD, Kaplan MR, Verlander JW, Lee WS, et al. (1996). Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1 in the rat kidney. Kidney Int. 50: 174-183. PMid:8807586   Shimodaira M, Nakayama T, Sato N, Naganuma T, et al. (2010). Association study of the elastin microfibril interfacer 1 (EMILIN1) gene in essential hypertension. Am. J. Hypertens. 23: 547-555. PMid:20186130   Song Y, Herrera VL, Filigheddu F, Troffa C, et al. (2001). Non-association of the thiazide-sensitive Na,Cl-cotransporter gene with polygenic hypertension in both rats and humans. J. Hypertens. 19: 1547-1551. PMid:11564973   Stanton JL, Braitman LE, Riley AM Jr, Khoo CS, et al. (1982). Demographic, dietary, life style, and anthropometric correlates of blood pressure. Hypertension 4: III135-III142. PMid:7106943   Tabara Y, Kohara K, Kita Y, Hirawa N, et al. (2010). Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension 56: 973-980. PMid:20921432   Wang XF, Lin RY, Wang SZ, Zhang LP, et al. (2008). Association study of variants in two ion-channel genes (TSC and CLCNKB) and hypertension in two ethnic groups in Northwest China. Clin. Chim. Acta 388: 95-98. PMid:17997379   Ward NC, Tsai IJ, Barden A, van Bockxmeer FM, et al. (2008). A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure. Hypertension 51: 1393-1398. PMid:18391101   Zhan YY, Jiang X, Lin G, Li J, et al. (2007). Association of thiazide-sensitive Na+-Cl* cotransporter gene polymorphisms with the risk of essential hypertension. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24: 703-705. PMid:18067089