Publications

Found 11 results
Filters: Author is Y. Shen  [Clear All Filters]
2016
L. L. Chen, Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., Chen, C. X., Chen, L. L., Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., and Chen, C. X., Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma, vol. 15, p. -, 2016.
L. L. Chen, Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., Chen, C. X., Chen, L. L., Shen, Y., Zhang, J. B., Wang, S., Jiang, T., Zheng, M. Q., Zheng, Z. J., and Chen, C. X., Association between polymorphisms in the promoter region of pri-miR-34b/c and risk of hepatocellular carcinoma, vol. 15, p. -, 2016.
Y. Shen, Liu, Y. H., Zhang, X. J., Sha, Q., Chen, Z. D., Shen, Y., Liu, Y. H., Zhang, X. J., Sha, Q., and Chen, Z. D., Gynophore miRNA analysis at different developmental stages in Arachis duranensis, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Self-Directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (grant #CX(13)5006). We thank Gene Pioneer Biotechnologies for their help with the bioinformatic analyses. REFERENCESAllen E, Xie Z, Gustafson AM, Carrington JC, et al (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221. http://dx.doi.org/10.1016/j.cell.2005.04.004 Chen X, Zhu W, Azam S, Li H, et al (2013). Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol. J. 11: 115-127. http://dx.doi.org/10.1111/pbi.12018 Chen X, Yang Q, Li H, Li H, et al (2016). Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol. J. 14: 1215-1224. http://dx.doi.org/10.1111/pbi.12487 Chen ZB, Wang ML, Barkley NA, Pittman RN, et al (2010). A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol. Biol. Rep. 28: 542-548. http://dx.doi.org/10.1007/s11105-010-0181-5 Chi X, Yang Q, Chen X, Wang J, et al (2011). Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6: e27530. http://dx.doi.org/10.1371/journal.pone.0027530 Deng X, Li Z, Zhang W, et al (2012). Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 30: 311-315. http://dx.doi.org/10.1016/j.fm.2011.11.001 Du Z, Zhou X, Ling Y, Zhang Z, et al (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38: W64-70. http://dx.doi.org/10.1093/nar/gkq310 Floyd SK, Bowman JL, et al (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428: 485-486. http://dx.doi.org/10.1038/428485a Griffiths-Jones S, et al (2006). miRBase: the microRNA sequence database. Methods Mol. Biol. 342: 129-138. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, et al (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: D121-D124. http://dx.doi.org/10.1093/nar/gki081 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140-D144. http://dx.doi.org/10.1093/nar/gkj112 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ, et al (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. http://dx.doi.org/10.1093/nar/gkm952 Herr AJ, et al (2005). Pathways through the small RNA world of plants. FEBS Lett. 579: 5879-5888. http://dx.doi.org/10.1016/j.febslet.2005.08.040 Lee RC, Feinbaum RL, Ambros V, et al (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y Li M, Zhao SZ, Zhao CZ, Zhang Y, et al. (2016). Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.). Genet. Mol. Res. 15: gmr.15017344. Mi S, Cai T, Hu Y, Chen Y, et al (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133: 116-127. http://dx.doi.org/10.1016/j.cell.2008.02.034 Moctezuma E, et al (2003). The peanut gynophore: a developmental and physiological perspective. Can. J. Bot. 81: 183-190. http://dx.doi.org/10.1139/b03-024 Sunkar R, Jagadeeswaran G, et al (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol. 8: 37. http://dx.doi.org/10.1186/1471-2229-8-37 Sunkar R, Zhou X, Zheng Y, Zhang W, et al (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8: 25. http://dx.doi.org/10.1186/1471-2229-8-25 Vazquez F, et al (2006). Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci. 11: 460-468. http://dx.doi.org/10.1016/j.tplants.2006.07.006 Wang C, Li C, Hou L, Liu X, et al (2013). Cloning and expression analysis of Gibberellin 2-Oxidase gene from peanut (Arachis hypogaea L). Shandong Agric. Sci. 45: 14-18. Xia H, Zhao C, Hou L, Li A, et al (2013). Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics 14: 517. http://dx.doi.org/10.1186/1471-2164-14-517 Yao Y, Guo G, Ni Z, Sunkar R, et al (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8: R96. http://dx.doi.org/10.1186/gb-2007-8-6-r96 Zhang B, Pan X, Cannon CH, Cobb GP, et al (2006). Conservation and divergence of plant microRNA genes. Plant J. 46: 243-259. http://dx.doi.org/10.1111/j.1365-313X.2006.02697.x Zhao CZ, Xia H, Frazier TP, Yao YY, et al (2010). Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol. 10: 3. http://dx.doi.org/10.1186/1471-2229-10-3 Zhao C, Zhao S, Hou L, Xia H, et al (2015). Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol. 15: 188. http://dx.doi.org/10.1186/s12870-015-0582-6 Zhu W, Zhang E, Li H, Chen X, et al (2013). Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J. Proteomics 91: 172-187. http://dx.doi.org/10.1016/j.jprot.2013.07.002 Zhu W, Chen X, Li H, Zhu F, et al (2014). Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol. Biol. 85: 395-409. http://dx.doi.org/10.1007/s11103-014-0193-x Zuker M, et al (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. http://dx.doi.org/10.1093/nar/gkg595  
Y. Shen, Liu, Y. H., Zhang, X. J., Sha, Q., Chen, Z. D., Shen, Y., Liu, Y. H., Zhang, X. J., Sha, Q., and Chen, Z. D., Gynophore miRNA analysis at different developmental stages in Arachis duranensis, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Self-Directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (grant #CX(13)5006). We thank Gene Pioneer Biotechnologies for their help with the bioinformatic analyses. REFERENCESAllen E, Xie Z, Gustafson AM, Carrington JC, et al (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221. http://dx.doi.org/10.1016/j.cell.2005.04.004 Chen X, Zhu W, Azam S, Li H, et al (2013). Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol. J. 11: 115-127. http://dx.doi.org/10.1111/pbi.12018 Chen X, Yang Q, Li H, Li H, et al (2016). Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). Plant Biotechnol. J. 14: 1215-1224. http://dx.doi.org/10.1111/pbi.12487 Chen ZB, Wang ML, Barkley NA, Pittman RN, et al (2010). A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol. Biol. Rep. 28: 542-548. http://dx.doi.org/10.1007/s11105-010-0181-5 Chi X, Yang Q, Chen X, Wang J, et al (2011). Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6: e27530. http://dx.doi.org/10.1371/journal.pone.0027530 Deng X, Li Z, Zhang W, et al (2012). Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 30: 311-315. http://dx.doi.org/10.1016/j.fm.2011.11.001 Du Z, Zhou X, Ling Y, Zhang Z, et al (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38: W64-70. http://dx.doi.org/10.1093/nar/gkq310 Floyd SK, Bowman JL, et al (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428: 485-486. http://dx.doi.org/10.1038/428485a Griffiths-Jones S, et al (2006). miRBase: the microRNA sequence database. Methods Mol. Biol. 342: 129-138. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, et al (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33: D121-D124. http://dx.doi.org/10.1093/nar/gki081 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, et al (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34: D140-D144. http://dx.doi.org/10.1093/nar/gkj112 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ, et al (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res. 36: D154-D158. http://dx.doi.org/10.1093/nar/gkm952 Herr AJ, et al (2005). Pathways through the small RNA world of plants. FEBS Lett. 579: 5879-5888. http://dx.doi.org/10.1016/j.febslet.2005.08.040 Lee RC, Feinbaum RL, Ambros V, et al (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. http://dx.doi.org/10.1016/0092-8674(93)90529-Y Li M, Zhao SZ, Zhao CZ, Zhang Y, et al. (2016). Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.). Genet. Mol. Res. 15: gmr.15017344. Mi S, Cai T, Hu Y, Chen Y, et al (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133: 116-127. http://dx.doi.org/10.1016/j.cell.2008.02.034 Moctezuma E, et al (2003). The peanut gynophore: a developmental and physiological perspective. Can. J. Bot. 81: 183-190. http://dx.doi.org/10.1139/b03-024 Sunkar R, Jagadeeswaran G, et al (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol. 8: 37. http://dx.doi.org/10.1186/1471-2229-8-37 Sunkar R, Zhou X, Zheng Y, Zhang W, et al (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8: 25. http://dx.doi.org/10.1186/1471-2229-8-25 Vazquez F, et al (2006). Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci. 11: 460-468. http://dx.doi.org/10.1016/j.tplants.2006.07.006 Wang C, Li C, Hou L, Liu X, et al (2013). Cloning and expression analysis of Gibberellin 2-Oxidase gene from peanut (Arachis hypogaea L). Shandong Agric. Sci. 45: 14-18. Xia H, Zhao C, Hou L, Li A, et al (2013). Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics 14: 517. http://dx.doi.org/10.1186/1471-2164-14-517 Yao Y, Guo G, Ni Z, Sunkar R, et al (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8: R96. http://dx.doi.org/10.1186/gb-2007-8-6-r96 Zhang B, Pan X, Cannon CH, Cobb GP, et al (2006). Conservation and divergence of plant microRNA genes. Plant J. 46: 243-259. http://dx.doi.org/10.1111/j.1365-313X.2006.02697.x Zhao CZ, Xia H, Frazier TP, Yao YY, et al (2010). Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol. 10: 3. http://dx.doi.org/10.1186/1471-2229-10-3 Zhao C, Zhao S, Hou L, Xia H, et al (2015). Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol. 15: 188. http://dx.doi.org/10.1186/s12870-015-0582-6 Zhu W, Zhang E, Li H, Chen X, et al (2013). Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J. Proteomics 91: 172-187. http://dx.doi.org/10.1016/j.jprot.2013.07.002 Zhu W, Chen X, Li H, Zhu F, et al (2014). Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Mol. Biol. 85: 395-409. http://dx.doi.org/10.1007/s11103-014-0193-x Zuker M, et al (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. http://dx.doi.org/10.1093/nar/gkg595  
K. D. Huang, Shen, Y., Wei, X., Zhang, F. Q., Liu, Y. Y., Ma, L., Huang, K. D., Shen, Y., Wei, X., Zhang, F. Q., Liu, Y. Y., and Ma, L., Inhibitory effect of microRNA-27b on interleukin 17 (IL-17)-induced monocyte chemoattractant protein-1 (MCP1) expression, vol. 15, p. -, 2016.
K. D. Huang, Shen, Y., Wei, X., Zhang, F. Q., Liu, Y. Y., Ma, L., Huang, K. D., Shen, Y., Wei, X., Zhang, F. Q., Liu, Y. Y., and Ma, L., Inhibitory effect of microRNA-27b on interleukin 17 (IL-17)-induced monocyte chemoattractant protein-1 (MCP1) expression, vol. 15, p. -, 2016.
2013
A. W. Le, Wang, Z. H., Yuan, R., Shan, L. L., Xiao, T. H., Zhuo, R., and Shen, Y., Association of the estrogen receptor-β gene RsaI and AluI polymorphisms with human idiopathic thin endometrium, vol. 12, pp. 5978-5985, 2013.
C. - P. Liu, Jiang, J. - A., Wang, T., Liu, X. - M., Gao, L., Zhu, R. - R., Shen, Y., Wu, M., Xu, T., and Zhang, X. - G., CTLA-4 and CD86 genetic variants and haplotypes in patients with rheumatoid arthritis in southeastern China, vol. 12, pp. 1373-1382, 2013.
Abdallah AM, Renzoni EA, Anevlavis S, Lagan AL, et al. (2006). A polymorphism in the promoter region of the CD86 (B7.2) gene is associated with systemic sclerosis. Int. J. Immunogenet. 33: 155-161. http://dx.doi.org/10.1111/j.1744-313X.2006.00580.x PMid:16712644   Almasi S, Erfani N, Mojtahedi Z, Rajaee A, et al. (2006). Association of CTLA-4 gene promoter polymorphisms with systemic sclerosis in Iranian population. Genes Immun. 7: 401-406. http://dx.doi.org/10.1038/sj.gene.6364313 PMid:16775619   Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Catalan D, Aravena O, Sabugo F, Wurmann P, et al. (2010). B cells from rheumatoid arthritis patients show important alterations in the expression of CD86 and FcgammaRIIb, which are modulated by anti-tumor necrosis factor therapy. Arthritis Res. Ther. 12: R68. http://dx.doi.org/10.1186/ar2985 PMid:20398308 PMCid:2888223   Chang JC, Liu CA, Chuang H, Ou CY, et al. (2004). Gender-limited association of cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphism with cord blood IgE levels. Pediatr. Allergy Immunol. 15: 506-512. http://dx.doi.org/10.1111/j.1399-3038.2004.00161.x PMid:15610363   Fox D (2005). Etiology and Pathogenesis of Rheumatoid Arthritis. In: Arthritis and Allied Conditions (Koopman W, ed.). Lippincott Williams & Wilkins, Philadephia, 1089-1115.   Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, et al. (2009). The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 10: 151-161. http://dx.doi.org/10.1038/gene.2008.89 PMid:19020530   Howson JM, Walker NM, Smyth DJ and Todd JA (2009). Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun. 10 (Suppl 1): S74-S84. http://dx.doi.org/10.1038/gene.2009.96 PMid:19956106 PMCid:2810493   Jones AL, Holliday EG, Mowry BJ, McLean DE, et al. (2009). CTLA-4 single-nucleotide polymorphisms in a Caucasian population with schizophrenia. Brain Behav. Immun. 23: 347-350. http://dx.doi.org/10.1016/j.bbi.2008.09.008 PMid:18848621   Kouki T, Gardine CA, Yanagawa T and Degroot LJ (2002). Relation of three polymorphisms of the CTLA-4 gene in patients with Graves' disease. J. Endocrinol. Invest. 25: 208-213. PMid:11936461   Kusztal M, Kościelska-Kasprzak K, Drulis-Fajdasz D, Magott-Procelewska M, et al. (2010). The influence of CTLA-4 gene polymorphism on long-term kidney allograft function in Caucasian recipients. Transpl. Immunol. 23: 121-124. http://dx.doi.org/10.1016/j.trim.2010.05.002 PMid:20470888   Landi D, Moreno V, Guino E, Vodicka P, et al. (2011). Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutat. Res. 717: 109-115. http://dx.doi.org/10.1016/j.mrfmmm.2010.10.002 PMid:20971123   Liang YL, Wu H, Li PQ, Xie XD, et al. (2011). Signal transducer and activator of transcription 4 gene polymorphisms associated with rheumatoid arthritis in Northwestern Chinese Han population. Life Sci. 89: 171-175. http://dx.doi.org/10.1016/j.lfs.2011.05.012 PMid:21683716   Ligers A, Teleshova N, Masterman T, Huang WX, et al. (2001). CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun. 2: 145-152. http://dx.doi.org/10.1038/sj.gene.6363752 PMid:11426323   Liu MF, Kohsaka H, Sakurai H, Azuma M, et al. (1996). The presence of costimulatory molecules CD86 and CD28 in rheumatoid arthritis synovium. Arthritis Rheum. 39: 110-114. http://dx.doi.org/10.1002/art.1780390115 PMid:8546719   Liu Y, Liang WB, Gao LB, Pan XM, et al. (2010). CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease. Hum. Immunol. 71: 1141-1146. http://dx.doi.org/10.1016/j.humimm.2010.08.007 PMid:20732370   Magistrelli G, Jeannin P, Herbault N, Benoit De CA, et al. (1999). A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29: 3596-3602. http://dx.doi.org/10.1002/(SICI)1521-4141(199911)29:11<3596::AID-IMMU3596>3.0.CO;2-Y   Marin LA, Moya-Quiles MR, Miras M, Muro M, et al. (2005). Evaluation of CD86 gene polymorphism at +1057 position in liver transplant recipients. Transpl. Immunol. 15: 69-74. http://dx.doi.org/10.1016/j.trim.2005.04.003 PMid:16223675   Matsushita M, Tsuchiya N, Oka T, Yamane A, et al. (2000). New polymorphisms of human CD80 and CD86: lack of association with rheumatoid arthritis and systemic lupus erythematosus. Genes Immun. 1: 428-434. http://dx.doi.org/10.1038/sj.gene.6363704 PMid:11196673   Maurer M, Loserth S, Kolb-Maurer A, Ponath A, et al. (2002). A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54: 1-8. http://dx.doi.org/10.1007/s00251-002-0429-9 PMid:11976786   Orozco G, Rueda B and Martin J (2006). Genetic basis of rheumatoid arthritis. Biomed. Pharmacother. 60: 656-662. http://dx.doi.org/10.1016/j.biopha.2006.09.003 PMid:17055211   Pawlak E, Karabon L, Wlodarska-Polinska I, Jedynak A, et al. (2010). Influence of CTLA-4/CD28/ICOS gene polymorphisms on the susceptibility to cervical squamous cell carcinoma and stage of differentiation in the Polish population. Hum. Immunol. 71: 195-200. http://dx.doi.org/10.1016/j.humimm.2009.11.006 PMid:19913589   Plant D, Flynn E, Mbarek H, Dieude P, et al. (2010). Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers. Ann. Rheum. Dis. 69: 1548-1553. http://dx.doi.org/10.1136/ard.2009.121020 PMid:20498205 PMCid:2938898   Rai E and Wakeland EK (2011). Genetic predisposition to autoimmunity - what have we learned? Semin. Immunol. 23: 67-83. http://dx.doi.org/10.1016/j.smim.2011.01.015 PMid:21288738   Scalapino KJ and Daikh DI (2008). CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol. Rev. 223: 143-155. http://dx.doi.org/10.1111/j.1600-065X.2008.00639.x PMid:18613834   Sharpe AH and Freeman GJ (2002). The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126. http://dx.doi.org/10.1038/nri727 PMid:11910893   Sole X, Guino E, Valls J, Iniesta R, et al. (2006). SNPStats: a web tool for the analysis of association studies. Bioinformatics 22: 1928-1929. http://dx.doi.org/10.1093/bioinformatics/btl268 PMid:16720584   Su TH, Chang TY, Lee YJ, Chen CK, et al. (2007). CTLA-4 gene and susceptibility to human papillomavirus-16- associated cervical squamous cell carcinoma in Taiwanese women. Carcinogenesis 28: 1237-1240. http://dx.doi.org/10.1093/carcin/bgm043 PMid:17341658   Tivol EA, Borriello F, Schweitzer AN, Lynch WP, et al. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3: 541-547. http://dx.doi.org/10.1016/1074-7613(95)90125-6   Wang XB, Zhao X, Giscombe R and Lefvert AK (2002). A CTLA-4 gene polymorphism at position -318 in the promoter region affects the expression of protein. Genes Immun. 3: 233-234. http://dx.doi.org/10.1038/sj.gene.6363869 PMid:12058260   Yadav D and Sarvetnick N (2007). B7-2 regulates survival, phenotype, and function of APCs. J. Immunol. 178: 6236- 6241. PMid:17475851   Zaletel K, Krhin B, Gaberscek S and Hojker S (2006). Thyroid autoantibody production is influenced by exon 1 and promoter CTLA-4 polymorphisms in patients with Hashimoto's thyroiditis. Int. J. Immunogenet. 33: 87-91. http://dx.doi.org/10.1111/j.1744-313X.2006.00574.x PMid:16611252