Publications

Found 17 results
Filters: Author is Y.L. Zhang  [Clear All Filters]
2016
R. X. Jia, Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., Wang, F., Jia, R. X., Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., Wang, F., Jia, R. X., Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., and Wang, F., Analysis of imprinted messenger RNA expression in deceased transgenic cloned goats, vol. 15, p. -, 2016.
R. X. Jia, Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., Wang, F., Jia, R. X., Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., Wang, F., Jia, R. X., Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., and Wang, F., Analysis of imprinted messenger RNA expression in deceased transgenic cloned goats, vol. 15, p. -, 2016.
R. X. Jia, Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., Wang, F., Jia, R. X., Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., Wang, F., Jia, R. X., Zhou, Z. R., Zhang, G. M., Wang, L. Z., Fan, Y. X., Wan, Y. J., Zhang, Y. L., Wang, Z. Y., and Wang, F., Analysis of imprinted messenger RNA expression in deceased transgenic cloned goats, vol. 15, p. -, 2016.
J. Z. Xu, Chai, Y. L., and Zhang, Y. L., Effect of rosuvastatin on high glucose-induced endoplasmic reticulum stress in human umbilical vein endothelial cells, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank all of the members of the pharmacology laboratory at the China Medical University who provided us with laboratory and technical support. Research supported by educational science foundation of Liaoning Province. REFERENCESBatchuluun B, Inoguchi T, Sonoda N, Sasaki S, et al (2014). Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis 232: 156-164. http://dx.doi.org/10.1016/j.atherosclerosis.2013.10.025 Bruno RM, Gori T, Ghiadoni L, et al (2014). Endothelial function testing and cardiovascular disease: focus on peripheral arterial tonometry. Vasc. Health Risk Manag. 10: 577-584. Chai YL, Xu JZ, Zhang YL, Sheng GT, et al (2016). Effects of probucol on cultured human umbilical vein endothelial cells injured by hypoxia/reoxygenation. Genet. Mol. Res. 15: 15016752. Chaudagar KK, Mehta AA, et al (2014). Effect of atorvastatin on the angiogenic responsiveness of coronary endothelial cells in normal and streptozotocin (STZ) induced diabetic rats. Can. J. Physiol. Pharmacol. 92: 338-349. http://dx.doi.org/10.1139/cjpp-2013-0391 Chistiakov DA, Revin VV, Sobenin IA, Orekhov AN, et al (2015). Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function. Mini Rev. Med. Chem. 15: 338-350. http://dx.doi.org/10.2174/1389557515666150226114031 Cifarelli V, Geng X, Styche A, Lakomy R, et al (2011). C-peptide reduces high-glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation in human aortic endothelial cells. Diabetologia 54: 2702-2712. http://dx.doi.org/10.1007/s00125-011-2251-0 Cominacini L, Mozzini C, Garbin U, Pasini A, et al. (2015). Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic. Biol. Med. 88 (Pt B): 233-242. Funk SD, Yurdagul AJrOrrAW, et al (2012). Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int. J. Vasc. Med. 2012: 569654. http://dx.doi.org/10.1155/2012/569654 Haffner SM, et al (2006). The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol. 97 (2A): 3A-11A. http://dx.doi.org/10.1016/j.amjcard.2005.11.010 Huang B, Li FA, Wu CH, Wang DL, et al (2012). The role of nitric oxide on rosuvastatin-mediated S-nitrosylation and translational proteomes in human umbilical vein endothelial cells. Proteome Sci. 10: 43. http://dx.doi.org/10.1186/1477-5956-10-43 Janket SJ, Jones JA, Meurman JH, Baird AE, et al (2008). Oral infection, hyperglycemia, and endothelial dysfunction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105: 173-179. http://dx.doi.org/10.1016/j.tripleo.2007.06.027 Kemeny SF, Figueroa DS, Clyne AM, et al (2013). Hypo- and hyperglycemia impair endothelial cell actin alignment and nitric oxide synthase activation in response to shear stress. PLoS One 8: e66176. http://dx.doi.org/10.1371/journal.pone.0066176 Kesavan M, Sarath TS, Kannan K, Suresh S, et al (2014). Atorvastatin restores arsenic-induced vascular dysfunction in rats: modulation of nitric oxide signaling and inflammatory mediators. Toxicol. Appl. Pharmacol. 280: 107-116. http://dx.doi.org/10.1016/j.taap.2014.07.008 Kim KM, Pae HO, Zheng M, Park R, et al (2007). Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ. Res. 101: 919-927. http://dx.doi.org/10.1161/CIRCRESAHA.107.154781 Lin R, Liu J, Gan W, Yang G, et al (2004). C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol. Pharm. Bull. 27: 1537-1543. http://dx.doi.org/10.1248/bpb.27.1537 Mah E, Bruno RS, et al (2012). Postprandial hyperglycemia on vascular endothelial function: mechanisms and consequences. Nutr. Res. 32: 727-740. http://dx.doi.org/10.1016/j.nutres.2012.08.002 Mahalwar R, Khanna D, et al (2013). Pleiotropic antioxidant potential of rosuvastatin in preventing cardiovascular disorders. Eur. J. Pharmacol. 711: 57-62. http://dx.doi.org/10.1016/j.ejphar.2013.04.025 Michalak M, Gye MC, et al (2015). Endoplasmic reticulum stress in periimplantation embryos. Clin. Exp. Reprod. Med. 42: 1-7. http://dx.doi.org/10.5653/cerm.2015.42.1.1 Omanwar S, Fahim M, et al (2015). Mercury exposure and endothelial dysfunction: an interplay between nitric oxide and oxidative stress. Int. J. Toxicol. 34: 300-307. http://dx.doi.org/10.1177/1091581815589766 Onat D, Brillon D, Colombo PC, Schmidt AM, et al (2011). Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Curr. Diab. Rep. 11: 193-202. http://dx.doi.org/10.1007/s11892-011-0182-2 Park HJ, Zhang Y, Georgescu SP, Johnson KL, et al (2006). Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2: 93-102. http://dx.doi.org/10.1007/s12015-006-0015-x Qiu ZL, Zhang JP, Guo XC, et al (2014). [Endoplasmic reticulum stress and vascular endothelial cell apoptosis]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 36: 102-107. Ruggiero D, Paolillo S, Ratta GD, Mariniello A, et al (2013). [Endothelial function as a marker of pre-clinical atherosclerosis: assessment techniques and clinical implications]. Monaldi Arch. Chest Dis. 80: 106-110. Safi SZ, Batumalaie K, Mansor M, Chinna K, et al (2015). Glutamine treatment attenuates hyperglycemia-induced mitochondrial stress and apoptosis in umbilical vein endothelial cells. Clinics (Sao Paulo) 70: 569-576. http://dx.doi.org/10.6061/clinics/2015(08)07 Schisano B, Harte AL, Lois K, Saravanan P, et al (2012). GLP-1 analogue, Liraglutide protects human umbilical vein endothelial cells against high glucose induced endoplasmic reticulum stress. Regul. Pept. 174: 46-52. http://dx.doi.org/10.1016/j.regpep.2011.11.008 Sozen E, Karademir B, Ozer NK, et al (2015). Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radic. Biol. Med. 78: 30-41. http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.031 Srivastava AK, Kalita J, Dohare P, Ray M, et al (2009). Studies of free radical generation by neurons in a rat model of cerebral venous sinus thrombosis. Neurosci. Lett. 450: 127-131. http://dx.doi.org/10.1016/j.neulet.2008.11.036 Tabas I, Ron D, et al (2011). Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13: 184-190. http://dx.doi.org/10.1038/ncb0311-184  
Y. L. Chai, Xu, J. Z., Zhang, Y. L., Sheng, G. T., Chai, Y. L., Xu, J. Z., Zhang, Y. L., and Sheng, G. T., Effects of probucol on cultured human umbilical vein endothelial cells injured by hypoxia/reoxygenation, vol. 15, p. -, 2016.
Y. L. Chai, Xu, J. Z., Zhang, Y. L., Sheng, G. T., Chai, Y. L., Xu, J. Z., Zhang, Y. L., and Sheng, G. T., Effects of probucol on cultured human umbilical vein endothelial cells injured by hypoxia/reoxygenation, vol. 15, p. -, 2016.
Y. L. Zhang, Liu, Z., Liu, T., Zhang, Y. L., Liu, Z., and Liu, T., Isolation and characterization of a novel paraffin wax-degrading bacterium, Pseudomonas sp strain PW-1, from petroleum-contaminated sites, vol. 15, p. -, 2016.
Y. L. Zhang, Liu, Z., Liu, T., Zhang, Y. L., Liu, Z., and Liu, T., Isolation and characterization of a novel paraffin wax-degrading bacterium, Pseudomonas sp strain PW-1, from petroleum-contaminated sites, vol. 15, p. -, 2016.
2013
R. A. Khan, Rashid, M., Wang, D., and Zhang, Y. L., Antibody-based detection of alkaline phosphatase in lepidopteran insects (Lepidoptera: Noctuidae), vol. 12, pp. 4371-4382, 2013.
Y. L. Zhang, Zhang, A. H., and Jiang, J., Gene expression patterns of invertase gene families and modulation of the inhibitor gene in tomato sucrose metabolism, vol. 12, pp. 3412-3420, 2013.
R. A. Khan, Rashid, M., Wang, D., and Zhang, Y. L., Molecular and biochemical characterization of the effects of insecticidal toxin from meloidae beetles on Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae), vol. 12, pp. 4393-4404, 2013.
Y. X. Fan, Gu, C. H., Zhang, Y. L., Zhong, B. S., Wang, L. Z., Zhou, Z. R., Wang, Z. Y., Jia, R. X., and Wang, F., Oct4 and Sox2 overexpression improves the proliferation and differentiation of bone mesenchymal stem cells in Xiaomeishan porcine, vol. 12, pp. 6067-6079, 2013.
D. X. Wang, Ma, H., Zhang, Y. L., Duan, A. A., Li, W. J., and Li, Z. H., Paeonia (Paeoniaceae) expressed sequence tag-derived microsatellite markers transferred to Paeonia delavayi, vol. 12, pp. 1278-1282, 2013.
Cristancho M and Escobar C (2008). Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix. Genet. Mol. Res. 7: 1186-1192. http://dx.doi.org/10.4238/vol7-4gmr493 PMid:19048497   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochem. Bull. 19: 11-15.   Feng GM (1992). Paeonia lutea (in Chinese). Science Press, Beijing.   Hong DY and Pan KY (1999). Taxonomical history and revision of Paeonia sect. Moutan DC. (Paeoniaceae). Acta Phytotaxonom. Sin. 37: 351-368.   IUCN Red List Categories and Criteria Version 3.1 (2001). Prepared by the IUCN Species Survival Commission, IUCN, Gland and Cambridge.   La Rota M, Kantety RV, Yu JK and Sorrells ME (2005). Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6: 23. http://dx.doi.org/10.1186/1471-2164-6-23 PMid:15720707 PMCid:550658   Li K, Zheng BQ, Wang Y and Bu WS (2012a). Numeric dynamics of natural populations of Paeonia delavayi (Paeoniaceae). Chin. J. Plant Ecol. 36: 522-529. http://dx.doi.org/10.3724/SP.J.1258.2012.00522   Li WJ, Ma H, Li ZH, Wan YM, et al. (2012b). Thirty-four Musa (Musaceae) expressed sequence tag-derived microsatellite markers transferred to Musella lasiocarpa. Genet. Mol. Res. 11: 2094-2098. http://dx.doi.org/10.4238/2012.August.6.13 PMid:22911593   Ma H, Wang L, Wan Y, Li H, et al. (2012). A set of novel microsatellite markers developed for Luculia yunnanensis (Rubiaceae), an endangered plant endemic to Yunnan, China. Int. J. Mol. Sci. 13: 534-539. http://dx.doi.org/10.3390/ijms13010534 PMid:22312269 PMCid:3269703   Pan KY (1979). Flora of China (in Chinese). Science Press, Beijing.   Raymond M and Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.   Rozen S and Skaletsky HJ (2000). Primer 3: Bioinformatics Methods and Protocols. In: Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, New Jersey.
Y. T. Hui, Yang, Y. Q., Liu, R. Y., Zhang, Y. Y., Xiang, C. J., Liu, Z. Z., Ding, Y. H., Zhang, Y. L., and Wang, B. R., Significant association of APOA5 and APOC3 gene polymorphisms with meat quality traits in Kele pigs, vol. 12, pp. 3643-3650, 2013.
2012
M. Guo, Zhang, Y. L., Meng, Z. J., and Jiang, J., Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes, vol. 11, pp. 661-671, 2012.
Biao ZY, Xia HL and Lin GZ (1994). Genetic transformation of antisense cDNA of polygalacturonase in tomato and transgenic plant regeneration. Acta Hort. Sin. 1: 305-306. Carolina C and Francisco ACM (2004). Tomato transformation and transgenic plant production. Plant Cell Tiss. Organ Cult. 76: 269-275. http://dx.doi.org/10.1023/B:TICU.0000009249.14051.77 Chen SC, Liu AR, Wang FH and Zhou Z (2010). Establishment of Agrobacterium-mediated genetic transformation system of Micro-Tom. Acta Agricult. Boreali-Sin. 25: 112-115. Chyi YS and Phillips GC (1987). High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep. 6: 105-108. Ellul P, Garcia-Sogo B, Pineda B, Rios G, et al. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) is genotype and procedure dependent [corrected]. Theor. Appl. Genet. 106: 231-238. PMid:12582848 Frary A and Van Eck J (2005). Organogenesis from transformed tomato explants. Methods Mol. Biol. 286: 141-150. PMid:15310918 Hamza S and Chupeau Y (1993). Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot. 44: 1873-1845. http://dx.doi.org/10.1093/jxb/44.12.1837 Hui YG, Ying JY and Zhe JC (2007). Studies on genetic transformation system of tomato. J. Jilin Teachers Inst. Eng. Tech. 23: 56-58. Hyeon JS, Sayaka U, Shin W and Hiroshi E (2007). A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47: 426-431. Koonneef M, Hanhart C, Jongsma M, Toma I, et al. (1986). Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci. 45: 201-208. http://dx.doi.org/10.1016/0168-9452(86)90140-8 Kou XH, Luo YB, Tian HQ and Shi Y (2007). Genetic transformation processing of tomatoes with anti-PG gene. Food Sci. 28: 187-191. Li YC, Zhu BZ and Luo YB (2007). Agrobacterium-mediated transformation of tomato with anti-LeERF2 gene. Food Sci. 28: 327-331. Ling W, Liang S, Ping L, Wang YJ, et al. (2009). Cloning of ABA biosynthesis key enzyme NCED gene from tomato fruit and its RNA interference genetic transformation. J. China Agri. Univ. 14: 54-60. Liqiong Z, Shaosong Z, Hongmei C, Chengyun L, et al. (2002). Studies on transformation of antisense ACCase gene into tomatoes. J. Yunnan Univ. 24: 393-397. McCormick S, Niedermeyer J, Fry J, Barnason A, et al. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81-84. http://dx.doi.org/10.1007/BF00269239 Meissner R, Jacobson Y, Melamed S, Levyatuv S, et al. (1997). A new model system for tomato genetics. Plant J. 12: 1465-1472. http://dx.doi.org/10.1046/j.1365-313x.1997.12061465.x Min YS (2009). Mathematical Statistics. Science Press, Beijing. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15: 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x Pozueta-Romero J, Houlné G, Cañas L, Schantz R, et al. (2001). Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tiss. Organ Cult. 67: 173-180. http://dx.doi.org/10.1023/A:1011997926381 Ross PJ (1988). Taguchi techniques for quality engineering. Loss function, orthogonal experiments, parameter and tolerance design. McGraw-Hill, New York. Van Roekel JSC, Damm B, Melchers LS and Hoekema A (1993). Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep. 12: 644-647. Xia ML, Wei SL and Fu JL (2004). Progress on genetic transformation of tomato mediated by Agrobacterium tumefaciens. J. Northeast Agricult. Univ. 35: 129-134. Yan H, Xang GC and Jun CL (2004). Agrobacterium-mediated transformation of tomoto with IPT and ETR121 gene and plant regeneration. J. Nanjing Normal Uiniv. 27: 83-87. Ying CY, Huang XQ, Guo YQ, Zhong LL, et al. (2008). Optimization of tomato genetic transformation, kanamycin-resistant screening and seed selection. Nan. Fang Yi Ke Da. Xue Xue Bao 28: 1117-1122. PMid:18676241 Zen C and Cheng Z (2008). Optimal research on Agrobacterium-mediated transformation systems of tomato (Lycopersicon esculentum). J. Zhejiang Univ. (Agricult. Life Sci.). 34: 615-620.