Publications
Found 3 results
Filters: Author is A. Islam [Clear All Filters]
,
“The role of Hsp90α in heat-induced apoptosis and cell damage in primary myocardial cell cultures of neonatal rats”, vol. 12, pp. 6080-6091, 2013.
, “Hsp110 expression changes in rat primary myocardial cells exposed to heat stress in vitro”, vol. 11, pp. 4728-4738, 2012.
, Andreasson C, Fiaux J, Rampelt H, Druffel-Augustin S, et al. (2008a). Insights into the structural dynamics of the Hsp110- Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. U. S. A. 105: 16519- 16524.
http://dx.doi.org/10.1073/pnas.0804187105
PMid:18948593 PMCid:2575452
Andreasson C, Fiaux J, Rampelt H, Mayer MP, et al. (2008b). Hsp110 is a nucleotide-activated exchange factor for Hsp70. J. Biol. Chem. 283: 8877-8884.
http://dx.doi.org/10.1074/jbc.M710063200
PMid:18218635
Bao E, Sultan KR, Nowak B and Hartung J (2008). Expression and distribution of heat shock proteins in the heart of transported pigs. Cell Stress Chaperones 13: 459-466.
http://dx.doi.org/10.1007/s12192-008-0042-4
PMid:18465207 PMCid:2673930
Bao E, Sultan KR, Bernhard N and Hartung J (2009). Expression of heat shock proteins in tissues from young pigs exposed to transport stress. Dtsch. Tierarztl. Wochenschr. 116: 321-325.
PMid:19813448
Barisic K and Kopic J (2002). Heat shock proteins and their clinical relevance. Acta Pharm. 52: 71-82.
Benjamin IJ and McMillan DR (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ. Res. 83: 117-132.
http://dx.doi.org/10.1161/01.RES.83.2.117
PMid:9686751
Burdon RH (1987). Temperature and animal cell protein synthesis. Symp. Soc. Exp. Biol. 41: 113-133.
PMid:3332481
Chen X, Easton D, Oh HJ, Lee-Yoon DS, et al. (1996). The 170 kDa glucose regulated stress protein is a large HSP70-, HSP110-like protein of the endoplasmic reticulum. FEBS Lett. 380: 68-72.
http://dx.doi.org/10.1016/0014-5793(96)00011-7
Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, et al. (1993). Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J. Natl. Cancer Inst. 85: 1558-1570.
http://dx.doi.org/10.1093/jnci/85.19.1558
PMid:8411230
Cumming DV, Heads RJ, Brand NJ, Yellon DM, et al. (1996). The ability of heat stress and metabolic preconditioning to protect primary rat cardiac myocytes. Basic Res. Cardiol. 91: 79-85.
PMid:8660264
DiDomenico BJ, Bugaisky GE and Lindquist S (1982). The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31: 593-603.
http://dx.doi.org/10.1016/0092-8674(82)90315-4
Dragovic Z, Broadley SA, Shomura Y, Bracher A, et al. (2006). Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25: 2519-2528.
http://dx.doi.org/10.1038/sj.emboj.7601138
PMid:16688212 PMCid:1478182
Easton DP, Kaneko Y and Subjeck JR (2000). The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5: 276-290.
http://dx.doi.org/10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2
Evrard L, Vanmuylder N, Dourov N, Glineur R, et al. (1999). Cytochemical identification of HSP110 during early mouse facial development. J. Craniofac. Genet. Dev. Biol. 19: 24-32.
PMid:10378145
Gathiram P, Gaffin SL, Brock-Utne JG and Wells MT (1987). Time course of endotoxemia and cardiovascular changes in heat-stressed primates. Aviat. Space Environ. Med. 58: 1071-1074.
PMid:3689271
Gathiram P, Wells MT, Raidoo D, Brock-Utne JG, et al. (1988). Portal and systemic plasma lipopolysaccharide concentrations in heat-stressed primates. Circ. Shock 25: 223-230.
PMid:3168172
Gisolfi CV, Matthes RD, Kregel KC and Oppliger R (1991). Splanchnic sympathetic nerve activity and circulating catecholamines in the hyperthermic rat. J. Appl. Physiol. 70: 1821-1826.
PMid:2055860
Gullo CA and Teoh G (2004). Heat shock proteins: to present or not, that is the question. Immunol. Lett. 94: 1-10.
http://dx.doi.org/10.1016/j.imlet.2004.04.002
PMid:15234529
Haagensen L, Jensen DH and Gesser H (2008). Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle. Comp Biochem. Physiol. A Mol. Integr. Physiol. 150: 404-409.
http://dx.doi.org/10.1016/j.cbpa.2008.04.604
PMid:18515165
Harrington HM, Dash S, Dharmasiri N and Dharmasiri S (1994). Heat-shock proteins: a search for functions. Aust. J. Plant Physiol. 21: 843-855.
http://dx.doi.org/10.1071/PP9940843
Hobbesland A, Kjuus H and Thelle DS (1997). Mortality from cardiovascular diseases and sudden death in ferroalloy plants. Scand. J. Work Environ. Health 23: 334-341.
http://dx.doi.org/10.5271/sjweh.229
PMid:9403463
Hylander BL, Chen X, Graf PC and Subjeck JR (2000). The distribution and localization of hsp110 in brain. Brain Res. 869: 49-55.
http://dx.doi.org/10.1016/S0006-8993(00)02346-5
Kaarniranta K, Oksala N, Karjalainen HM, Suuronen T, et al. (2002). Neuronal cells show regulatory differences in the hsp70 gene response. Brain Res. Mol. Brain Res. 101: 136-140.
http://dx.doi.org/10.1016/S0169-328X(02)00179-1
Kaneko Y, Nishiyama H, Nonoguchi K, Higashitsuji H, et al. (1997). A novel hsp110-related gene, apg-1, that is abundantly expressed in the testis responds to a low temperature heat shock rather than the traditional elevated temperatures. J. Biol. Chem. 272: 2640-2645.
http://dx.doi.org/10.1074/jbc.272.5.2640
PMid:9006898
Koelkebeck KW and Odom TW (1995). Laying hen responses to acute heat stress and carbon dioxide supplementation: II. Changes in plasma enzymes, metabolites and electrolytes. Comp. Biochem. Physiol. A Physiol. 112: 119-122.
Lei L, Yu J and Bao E (2009). Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. Br. Poult. Sci. 50: 504-511.
http://dx.doi.org/10.1080/00071660903110851
PMid:19735020
Lindquist S and Craig EA (1988). The heat-shock proteins. Annu. Rev. Genet. 22: 631-677.
http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
PMid:2853609
Lindquist S and Petersen R (1990). Selective translation and degradation of heat-shock messenger RNAs in Drosophila. Enzyme 44: 147-166.
PMid:2133647
Liu Q and Hendrickson WA (2007). Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131: 106-120.
http://dx.doi.org/10.1016/j.cell.2007.08.039
PMid:17923091 PMCid:2041797
Locke M, Noble EG, Tanguay RM, Feild MR, et al. (1995). Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am. J. Physiol. 268: C1387-C1394.
PMid:7611357
Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, et al. (2010). Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol. Biol. Cell 21: 1439-1448.
http://dx.doi.org/10.1091/mbc.E09-09-0779
PMid:20237159 PMCid:2861604
Manjili MH, Wang XY, Chen X, Martin T, et al. (2003). HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J. Immunol. 171: 4054-4061.
PMid:14530326
Mitchell MA and Sandercock DA (1995). Increased hyperthermia induced skeletal muscle damage in fast growing broiler chickens? Poultry Sci. 74: 74.
Morris SD, Cumming DV, Latchman DS and Yellon DM (1996). Specific induction of the 70-kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes. A new pharmacological route to stress protein expression? J. Clin. Invest 97: 706-712.
http://dx.doi.org/10.1172/JCI118468
PMid:8609226 PMCid:507107
Oh HJ, Chen X and Subjeck JR (1997). Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J. Biol. Chem. 272: 31636-31640.
http://dx.doi.org/10.1074/jbc.272.50.31636
PMid:9395504
Polier S, Hartl FU and Bracher A (2010). Interaction of the Hsp110 molecular chaperones from S. cerevisiae with substrate protein. J. Mol. Biol. 401: 696-707.
http://dx.doi.org/10.1016/j.jmb.2010.07.004
PMid:20624400