Publications

Found 15 results
Filters: Author is H.Y. Zhang  [Clear All Filters]
2016
H. G. Zhang, Zhang, X. Y., Zhang, H. Y., Tian, T., Xu, S. B., Liu, R. Z., Zhang, H. G., Zhang, X. Y., Zhang, H. Y., Tian, T., Xu, S. B., and Liu, R. Z., Balanced reciprocal translocation at amniocentesis: cytogenetic detection and implications for genetic counseling, vol. 15, p. -, 2016.
H. G. Zhang, Zhang, X. Y., Zhang, H. Y., Tian, T., Xu, S. B., Liu, R. Z., Zhang, H. G., Zhang, X. Y., Zhang, H. Y., Tian, T., Xu, S. B., and Liu, R. Z., Balanced reciprocal translocation at amniocentesis: cytogenetic detection and implications for genetic counseling, vol. 15, p. -, 2016.
L. L. Li, Zhang, H. G., Shao, X. G., Gao, J. C., Zhang, H. Y., Liu, R. Z., Li, L. L., Zhang, H. G., Shao, X. G., Gao, J. C., Zhang, H. Y., and Liu, R. Z., De novo interstitial deletion in the long arm of chromosome 11: a case report, vol. 15, p. -, 2016.
L. L. Li, Zhang, H. G., Shao, X. G., Gao, J. C., Zhang, H. Y., Liu, R. Z., Li, L. L., Zhang, H. G., Shao, X. G., Gao, J. C., Zhang, H. Y., and Liu, R. Z., De novo interstitial deletion in the long arm of chromosome 11: a case report, vol. 15, p. -, 2016.
Y. He, Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., Tan, Y. H., He, Y., Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., and Tan, Y. H., Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Amemiya H, Matsuzaka K, Kokubu E, Ohta S, et al (2008). Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J. Periodontal Res. 43: 322-327. http://dx.doi.org/10.1111/j.1600-0765.2007.01032.x Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, et al (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20: 265-271. http://dx.doi.org/10.1038/nm.3465 Corbet EF, et al (2006). Periodontal diseases in Asians. J. Int. Acad. Periodontol. 8: 136-144. Dumitrescu AL, et al (2016). Editorial: Periodontal Disease - A Public Health Problem. Front. Public Health 3: 278. http://dx.doi.org/10.3389/fpubh.2015.00278 Eke PI, Dye BA, Wei L, Slade GD, et al (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622. http://dx.doi.org/10.1902/jop.2015.140520 Gay IC, Chen S, MacDougall M, et al (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10: 149-160. http://dx.doi.org/10.1111/j.1601-6343.2007.00399.x Hackett PH, Roach RC, et al (2001). High-altitude illness. N. Engl. J. Med. 345: 107-114. http://dx.doi.org/10.1056/NEJM200107123450206 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, et al (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275: 9645-9652. http://dx.doi.org/10.1074/jbc.275.13.9645 Jian C, Li C, Ren Y, He Y, et al (2014). Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 37: 1413-1423. http://dx.doi.org/10.1007/s10753-014-9865-6 Li Q, Yu B, Yang P, et al (2015). Hypoxia-induced HMGB1 in would tissues promotes the osteoblast cell proliferation via activating ERK/JNK signaling. Int. J. Clin. Exp. Med. 8: 15087-15097. Liu Q, Cen L, Zhou H, Yin S, et al (2009). The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng. Part A 15: 3487-3497. http://dx.doi.org/10.1089/ten.tea.2009.0175 Matsuda N, Morita N, Matsuda K, Watanabe M, et al (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem. Biophys. Res. Commun. 249: 350-354. http://dx.doi.org/10.1006/bbrc.1998.9151 Mattioli-Belmonte M, Teti G, Salvatore V, Focaroli S, et al (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6: 266. http://dx.doi.org/10.3389/fphys.2015.00266 Park SY, Kim KH, Gwak EH, Rhee SH, et al (2015). Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J. Biomed. Mater. Res. A 103: 38-47. http://dx.doi.org/10.1002/jbm.a.35145 Qiu X, Zheng M, Song D, Huang L, et al (2016). Notoginsenoside Rb1 inhibits activation of ERK and p38 MAPK pathways induced by hypoxia and hypercapnia. Exp. Ther. Med. 11: 2455-2461. Rodríguez-Carballo E, Gámez B, Ventura F, et al (2016). p38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 4: 40. http://dx.doi.org/10.3389/fcell.2016.00040 Seo BM, Miura M, Gronthos S, Bartold PM, et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149-155. http://dx.doi.org/10.1016/S0140-6736(04)16627-0 Somerman MJ, Young MF, Foster RA, Moehring JM, et al (1990). Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 35: 241-247. http://dx.doi.org/10.1016/0003-9969(90)90062-F Sun Y, Liu WZ, Liu T, Feng X, et al (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35: 600-604. http://dx.doi.org/10.3109/10799893.2015.1030412 Tang R, Wei F, Wei L, Wang S, et al (2014). Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J. Tissue Eng. Regen. Med. 8: 226-232. http://dx.doi.org/10.1002/term.1516 Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, et al (2013). Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch. Oral Biol. 58: 1407-1414. http://dx.doi.org/10.1016/j.archoralbio.2013.06.010 Trubiani O, Giacoppo S, Ballerini P, Diomede F, et al (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7: 1. http://dx.doi.org/10.1186/s13287-015-0253-4 Vandana KL, Desai R, Dalvi PJ, et al (2015). Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int. J. Stem Cells 8: 235-237. http://dx.doi.org/10.15283/ijsc.2015.8.2.235 Wang Z, Wang W, Xu S, Wang S, et al (2016). The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol. Rep. 36: 685-695. Wu RX, Bi CS, Yu Y, Zhang LL, et al (2015). Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22: 70-82. http://dx.doi.org/10.1016/j.actbio.2015.04.024 Wu Y, Yang Y, Yang P, Gu Y, et al (2013). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58: 1357-1368. http://dx.doi.org/10.1016/j.archoralbio.2013.03.011 Xiao X, Li Y, Zhang G, Gao Y, et al (2012). Detection of bacterial diversity in rat’s periodontitis model under imitational altitude hypoxia environment. Arch. Oral Biol. 57: 23-29. http://dx.doi.org/10.1016/j.archoralbio.2011.07.005 Xu CL, Zheng B, Pei JH, Shen SJ, et al (2016). Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol. Med. Rep. 14: 307-312. Yang ZH, Zhang XJ, Dang NN, Ma ZF, et al (2009). Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J. Periodontal Res. 44: 199-210. http://dx.doi.org/10.1111/j.1600-0765.2008.01106.x Zhang HY, Liu R, Xing YJ, Xu P, et al (2013). Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp. Ther. Med. 6: 1553-1559. Zhang QB, Zhang ZQ, Fang SL, Liu YR, et al (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13: 10204-10214. http://dx.doi.org/10.4238/2014.December.4.15
Y. He, Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., Tan, Y. H., He, Y., Jian, C. X., Zhang, H. Y., Zhou, Y., Wu, X., Zhang, G., and Tan, Y. H., Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Amemiya H, Matsuzaka K, Kokubu E, Ohta S, et al (2008). Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J. Periodontal Res. 43: 322-327. http://dx.doi.org/10.1111/j.1600-0765.2007.01032.x Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, et al (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20: 265-271. http://dx.doi.org/10.1038/nm.3465 Corbet EF, et al (2006). Periodontal diseases in Asians. J. Int. Acad. Periodontol. 8: 136-144. Dumitrescu AL, et al (2016). Editorial: Periodontal Disease - A Public Health Problem. Front. Public Health 3: 278. http://dx.doi.org/10.3389/fpubh.2015.00278 Eke PI, Dye BA, Wei L, Slade GD, et al (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J. Periodontol. 86: 611-622. http://dx.doi.org/10.1902/jop.2015.140520 Gay IC, Chen S, MacDougall M, et al (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod. Craniofac. Res. 10: 149-160. http://dx.doi.org/10.1111/j.1601-6343.2007.00399.x Hackett PH, Roach RC, et al (2001). High-altitude illness. N. Engl. J. Med. 345: 107-114. http://dx.doi.org/10.1056/NEJM200107123450206 Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, et al (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275: 9645-9652. http://dx.doi.org/10.1074/jbc.275.13.9645 Jian C, Li C, Ren Y, He Y, et al (2014). Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells. Inflammation 37: 1413-1423. http://dx.doi.org/10.1007/s10753-014-9865-6 Li Q, Yu B, Yang P, et al (2015). Hypoxia-induced HMGB1 in would tissues promotes the osteoblast cell proliferation via activating ERK/JNK signaling. Int. J. Clin. Exp. Med. 8: 15087-15097. Liu Q, Cen L, Zhou H, Yin S, et al (2009). The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng. Part A 15: 3487-3497. http://dx.doi.org/10.1089/ten.tea.2009.0175 Matsuda N, Morita N, Matsuda K, Watanabe M, et al (1998). Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem. Biophys. Res. Commun. 249: 350-354. http://dx.doi.org/10.1006/bbrc.1998.9151 Mattioli-Belmonte M, Teti G, Salvatore V, Focaroli S, et al (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6: 266. http://dx.doi.org/10.3389/fphys.2015.00266 Park SY, Kim KH, Gwak EH, Rhee SH, et al (2015). Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J. Biomed. Mater. Res. A 103: 38-47. http://dx.doi.org/10.1002/jbm.a.35145 Qiu X, Zheng M, Song D, Huang L, et al (2016). Notoginsenoside Rb1 inhibits activation of ERK and p38 MAPK pathways induced by hypoxia and hypercapnia. Exp. Ther. Med. 11: 2455-2461. Rodríguez-Carballo E, Gámez B, Ventura F, et al (2016). p38 MAPK Signaling in Osteoblast Differentiation. Front. Cell Dev. Biol. 4: 40. http://dx.doi.org/10.3389/fcell.2016.00040 Seo BM, Miura M, Gronthos S, Bartold PM, et al (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364: 149-155. http://dx.doi.org/10.1016/S0140-6736(04)16627-0 Somerman MJ, Young MF, Foster RA, Moehring JM, et al (1990). Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 35: 241-247. http://dx.doi.org/10.1016/0003-9969(90)90062-F Sun Y, Liu WZ, Liu T, Feng X, et al (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35: 600-604. http://dx.doi.org/10.3109/10799893.2015.1030412 Tang R, Wei F, Wei L, Wang S, et al (2014). Osteogenic differentiated periodontal ligament stem cells maintain their immunomodulatory capacity. J. Tissue Eng. Regen. Med. 8: 226-232. http://dx.doi.org/10.1002/term.1516 Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, et al (2013). Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch. Oral Biol. 58: 1407-1414. http://dx.doi.org/10.1016/j.archoralbio.2013.06.010 Trubiani O, Giacoppo S, Ballerini P, Diomede F, et al (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7: 1. http://dx.doi.org/10.1186/s13287-015-0253-4 Vandana KL, Desai R, Dalvi PJ, et al (2015). Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int. J. Stem Cells 8: 235-237. http://dx.doi.org/10.15283/ijsc.2015.8.2.235 Wang Z, Wang W, Xu S, Wang S, et al (2016). The role of MAPK signaling pathway in the Her-2-positive meningiomas. Oncol. Rep. 36: 685-695. Wu RX, Bi CS, Yu Y, Zhang LL, et al (2015). Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22: 70-82. http://dx.doi.org/10.1016/j.actbio.2015.04.024 Wu Y, Yang Y, Yang P, Gu Y, et al (2013). The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch. Oral Biol. 58: 1357-1368. http://dx.doi.org/10.1016/j.archoralbio.2013.03.011 Xiao X, Li Y, Zhang G, Gao Y, et al (2012). Detection of bacterial diversity in rat’s periodontitis model under imitational altitude hypoxia environment. Arch. Oral Biol. 57: 23-29. http://dx.doi.org/10.1016/j.archoralbio.2011.07.005 Xu CL, Zheng B, Pei JH, Shen SJ, et al (2016). Embelin induces apoptosis of human gastric carcinoma through inhibition of p38 MAPK and NF-κB signaling pathways. Mol. Med. Rep. 14: 307-312. Yang ZH, Zhang XJ, Dang NN, Ma ZF, et al (2009). Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J. Periodontal Res. 44: 199-210. http://dx.doi.org/10.1111/j.1600-0765.2008.01106.x Zhang HY, Liu R, Xing YJ, Xu P, et al (2013). Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro. Exp. Ther. Med. 6: 1553-1559. Zhang QB, Zhang ZQ, Fang SL, Liu YR, et al (2014). Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet. Mol. Res. 13: 10204-10214. http://dx.doi.org/10.4238/2014.December.4.15
X. C. Sun, Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., Zhang, H. Y., Sun, X. C., Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., and Zhang, H. Y., miR-146a and miR-196a2 polymorphisms in ovarian cancer risk, vol. 15, p. -, 2016.
X. C. Sun, Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., Zhang, H. Y., Sun, X. C., Zhang, A. C., Tong, L. L., Wang, K., Wang, X., Sun, Z. Q., and Zhang, H. Y., miR-146a and miR-196a2 polymorphisms in ovarian cancer risk, vol. 15, p. -, 2016.
2012
S. G. Li, Li, W. Q., Wang, J. K., Zhang, H. Y., Li, W., Zhang, P., Wang, X. H., Zhang, H. X., Gu, J. P., and Gu, R. J., Association of the genes for tumor necrosis factor-α and myelin basic protein with delayed encephalopathy after acute carbon monoxide poisoning, vol. 11, pp. 4479-4486, 2012.
Australia and New Zealand Multiple Sclerosis Genetics Consortium (2009). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41: 824-828. http://dx.doi.org/10.1038/ng.396 PMid:19525955   Bai XF, Li O, Zhou Q, Zhang H, et al. (2004). CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J. Exp. Med. 200: 447-458. http://dx.doi.org/10.1084/jem.20040131 PMid:15314074 PMCid:2211938   González S, Rodrigo L, Martinez-Borra J, Lopez-Vazquez A, et al. (2003). TNF-α -308A promoter polymorphism is associated with enhanced TNF-α production and inflammatory activity in Crohn's patients with fistulizing disease. Am. J. Gastroenterol. 98: 1101-1106. PMid:12809834   Gu RJ, Lu H, Hu SJ and Zhang XM (2001). The change of the CSF Ig and TNF-α in patients with delayed encephalopathy after acute carbon monoxide poisoning. J. Apoplexy Nervdus Dis. 18: 173-174.   Gu RJ, Chen Z, Zhang XM, Song JG, et al. (2002). The determination of neuron specific enolase and myelin basic protein in Geriatric patients with delayed encephalopathy after acute carbon monoxide poisoning. Chin. J. Geriatr. 21: 60-61.   Gu RJ, Wang XH, Zhang P, Lu H, et al. (2005). Change of the serum interleukin 6 in patients with delayed encephalopathy after acute carbon monoxide poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 23: 461-462. PMid:16405788   Guerini FR, Ferrante P, Losciale L, Caputo D, et al. (2003). Myelin basic protein gene is associated with MS in DR4- and DR5-positive Italians and Russians. Neurology 61: 520-526. http://dx.doi.org/10.1212/01.WNL.0000079372.54703.A8 PMid:12939427   Hafler DA, Compston A, Sawcer S, Lander ES, et al. (2007). Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357: 851-862. http://dx.doi.org/10.1056/NEJMoa073493 PMid:17660530   Jia A, Gong J, Li YC, Zuo XM, et al. (2009). Correlation of polymorphisms of the IL-1 promoter region and tumor necrosis factor-α gene with susceptibility of non-cardiac gastric cancer in a Han nationality of Shaanxi Chinese population. J. Xi an Jiaotong Univ. 1: 70-73.   Kamijo Y, Soma K and Ide T (2007). Recurrent myelin basic protein elevation in cerebrospinal fluid as a predictive marker of delayed encephalopathy after carbon monoxide poisoning. Am. J. Emerg. Med. 25: 483-485. http://dx.doi.org/10.1016/j.ajem.2006.06.019 PMid:17499675   Kroeger KM, Steer JH, Joyce DA and Abraham LJ (2000). Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 12: 110-119. http://dx.doi.org/10.1006/cyto.1999.0529 PMid:10671295   Lindholm E, Bakhtadze E, Cilio C, Agardh E, et al. (2008). Association between LTA, TNF and AGER polymorphisms and late diabetic complications. PLoS One 3: e2546. http://dx.doi.org/10.1371/journal.pone.0002546 PMid:18575614 PMCid:2429972   Lu MC, Yang KL, Tung CH, Huang KY, et al. (2008). Higher LPS-stimulated TNF-α mRNA levels in peripheral blood mononuclear cells from Chinese ankylosing spondylitis patients with -308G/A polymorphism in promoter region of tumor necrosis factor: association with distinct A33/B58/Cw10 haplotypes. Rheumatol. Int. 29: 189-195. http://dx.doi.org/10.1007/s00296-008-0671-z PMid:18719920   Lv ZQ and Sun B (2008). Association of TNF-α gene polymorphism with Graves ophthalmopathy. J. Shanxi Med. Univ. 39: 633-636.   Pihlaja H, Rantamaki T, Wikstrom J, Sumelahti ML, et al. (2003). Linkage disequilibrium between the MBP tetranucleotide repeat and multiple sclerosis is restricted to a geographically defined subpopulation in Finland. Genes Immun. 4: 138-146. http://dx.doi.org/10.1038/sj.gene.6363943 PMid:12618862   Pu J and Zeng WY (2009). Relationship among TNF-α gene promoter -308 site polymorphism, the levels of maternal serum TNF-α, and the mRNA expression placental TNF-α in preterm labor. Sichuan Da Xue Xue Bao Yi Xue Ban 40: 77-80. PMid:19292050   Sarial S, Shokrgozar MA, Amirzargar A, Shokri F, et al. (2008). IL-1, IL-1R and TNF-α gene polymorphisms in Iranian patients with multiple sclerosis. Iran J. Allergy Asthma Immunol. 7: 37-40. PMid:18322311   Tarkowski E, Liljeroth AM, Nilsson A, Ricksten A, et al. (2000). TNF gene polymorphism and its relation to intracerebral production of TNF-α and TNF-β in AD. Neurology 54: 2077-2081. http://dx.doi.org/10.1212/WNL.54.11.2077 PMid:10851366   Thom SR, Bhopale VM, Fisher D, Zhang J, et al. (2004). Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc. Natl. Acad. Sci. U. S. A. 101: 13660-13665. http://dx.doi.org/10.1073/pnas.0405642101 PMid:15342916 PMCid:518809   Ye RG and Lu ZY (2004). The Internal Medicine. 6th edn. People's Medical Publishing House, Beijing.   Zhang P, Gu RJ and Zhang F (2007). Changes of serum interleukin levels and its clinic significance in patients with delayed encephalopathy after acute carbon monoxide poisoning. J. Clin. Neurol. 20: 220-221.   Zhen L, Gu RJ and Zhang P (2008). Serum levels and clinical significance of IL in patients with delayed encephalopathy after acute carbon monoxide poisoning. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 26: 561-562. PMid:19309591