Publications

Found 28 results
Filters: Author is X. Liu  [Clear All Filters]
2016
X. Liu, Chen, J. M., Lou, J. L., Huang, Y. X., Yan, Y., Sun, G. Z., Li, N., Liu, X., Chen, J. M., Lou, J. L., Huang, Y. X., Yan, Y., Sun, G. Z., and Li, N., Correlation between hepatitis B virus DNA levels and diagnostic tests for HBsAg, HBeAg, and PreS1-Ag in chronic hepatitis B, vol. 15, p. -, 2016.
X. Liu, Chen, J. M., Lou, J. L., Huang, Y. X., Yan, Y., Sun, G. Z., Li, N., Liu, X., Chen, J. M., Lou, J. L., Huang, Y. X., Yan, Y., Sun, G. Z., and Li, N., Correlation between hepatitis B virus DNA levels and diagnostic tests for HBsAg, HBeAg, and PreS1-Ag in chronic hepatitis B, vol. 15, p. -, 2016.
X. Liu, Sun, Y., Yue, L., Li, S., Qi, X., Zhao, H., Yang, Y., Zhang, C., Yu, H., Liu, X., Sun, Y., Yue, L., Li, S., Qi, X., Zhao, H., Yang, Y., Zhang, C., and Yu, H., JNK pathway and relative transcriptional factor were involved in ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells, vol. 15, p. -, 2016.
X. Liu, Sun, Y., Yue, L., Li, S., Qi, X., Zhao, H., Yang, Y., Zhang, C., Yu, H., Liu, X., Sun, Y., Yue, L., Li, S., Qi, X., Zhao, H., Yang, Y., Zhang, C., and Yu, H., JNK pathway and relative transcriptional factor were involved in ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells, vol. 15, p. -, 2016.
X. Liu, Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., Wang, L. X., Liu, X., Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., and Wang, L. X., Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3, vol. 15, p. -, 2016.
X. Liu, Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., Wang, L. X., Liu, X., Wang, L. G., Zhang, L. C., Yan, H., Zhao, K. B., Liang, J., Li, N., Pu, L., Zhang, T., and Wang, L. X., Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3, vol. 15, p. -, 2016.
L. Pu, Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., Wang, L. X., Pu, L., Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., and Wang, L. X., Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake, vol. 15, p. -, 2016.
L. Pu, Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., Wang, L. X., Pu, L., Zhang, L. C., Zhang, J. S., Song, X., Wang, L. G., Liang, J., Zhang, Y. B., Liu, X., Yan, H., Zhang, T., Yue, J. W., Li, N., Wu, Q. Q., and Wang, L. X., Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake, vol. 15, p. -, 2016.
2015
J. Cheng, Cen, J. - M., Cai, M. - Y., Xu, S., Li, L., Li, Z. - C., Yang, X. - L., Chen, C., Liu, X., and Xiong, X. - D., Association between TNFSF4 tagSNPs and myocardial infarction in a Chinese Han population, vol. 14, pp. 6136-6145, 2015.
J. Zhang, Liu, X., and Li, X. - J., Bioinformatic analysis of phage AB3, a phiKMV-like virus infecting Acinetobacter baumannii, vol. 14, pp. 190-198, 2015.
X. Liu, Du, Y. R., Li, X. H., Li, X. L., Yang, W. Q., and Wang, Y., Breeding of a target genotype variety based on identified chalkiness marker-QTL associations in rice (Oryza sativa L.), vol. 14, pp. 12894-12902, 2015.
Y. B. Ma, Li, G. X., Hu, J. X., Liu, X., and Shi, B. M., Correlation of miR-494 expression with tumor progression and patient survival in pancreatic cancer, vol. 14, pp. 18153-18159, 2015.
S. Pingcuo, Gao, J., Jiang, Z. R., Jin, S. Y., Fu, C. Y., Liu, X., Huang, L., and Zheng, Y. C., Duplication polymorphisms in exon 4 of κ-casein gene in yak breeds/populations, vol. 14, pp. 10242-10248, 2015.
X. X. Liu, Lang, S. R., Su, L. Q., Liu, X., and Wang, X. F., Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus ‘Precocity’ cultivar, vol. 14, pp. 16840-16855, 2015.
W. Guo, Gu, H. F., Zhang, H. G., Chen, S. B., Wang, J. Q., Geng, S. X., Li, L., Liu, P., Liu, X., Ji, Y. R., Li, S. W., and Yang, L., An outbreak of Candida parapsilosis fungemia among preterm infants, vol. 14, pp. 18259-18267, 2015.
X. Zhou, Yang, C., Li, Y., Liu, X., and Wang, Y., Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection, vol. 14, pp. 9683-9692, 2015.
X. Liu, Yang, Y. Y., Wang, X. M., Liu, Z. S., Wang, Z. H., and Ding, Y. Z., Sex identification based on AMEL gene PCR amplification from blue sheep (Pseudois nayaur) fecal DNA samples, vol. 14, pp. 9045-9052, 2015.
S. N. Liang, Huang, Y. J., Liu, L. L., and Liu, X., Study on the correlation between the expression of Ki67 and FasL and prognosis of cervical carcinoma, vol. 14, pp. 8634-8639, 2015.
2012
J. Dai, Liu, X., and Wang, Y., Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China, vol. 11, pp. 2683-2693, 2012.
Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, et al. (2004). Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430: 551-554. http://dx.doi.org/10.1038/nature02649 PMid:15282603   Allen EK (1981). The Leguminosae, A Source Book of Characteristics, Uses, and Nodulation. University of Wisconsin Press.   Binde DR, Menna P, Bangel EV, Barcellos FG, et al. (2009). rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Appl. Microbiol. Biotechnol. 83: 897-908. http://dx.doi.org/10.1007/s00253-009-1927-6 PMid:19290521   Chen WF, Guan SH, Zhao CT, Yan XR, et al. (2008). Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges. FEMS Microbiol. Lett. 283: 203-209. http://dx.doi.org/10.1111/j.1574-6968.2008.01167.x PMid:18422620   Chen WM, Moulin L, Bontemps C, Vandamme P, et al. (2003). Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J. Bacteriol. 185: 7266-7272. http://dx.doi.org/10.1128/JB.185.24.7266-7272.2003 PMid:14645288 PMCid:296247   Cox MM (2003). The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57: 551-577. http://dx.doi.org/10.1146/annurev.micro.57.030502.090953 PMid:14527291   Duzan HM, Zhou X, Souleimanov A and Smith DL (2004). Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 55: 2641-2646. http://dx.doi.org/10.1093/jxb/erh265 PMid:15361528   Eardly BD, Wang F-S and Berkum P (1996). Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186: 69-74. http://dx.doi.org/10.1007/BF00035057   Gao JL, Turner SL and Kan FL (2004). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int. J. Syst. Evol. Microbiol. 54: 2003- 2012. http://dx.doi.org/10.1099/ijs.0.02840-0 PMid:15545425   Gao LF, Hu ZA and Wang HX (2002). Genetic diversity of rhizobia isolated from Caragana intermedia in Maowusu sandland, north of China. Lett. Appl. Microbiol. 35: 347-352. http://dx.doi.org/10.1046/j.1472-765X.2002.01192.x PMid:12358701   Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, et al. (2001). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 51: 2037-2048. http://dx.doi.org/10.1099/00207713-51-6-2037 PMid:11760945   Ghosh W and Roy P (2006). Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int. J. Syst. Evol. Microbiol. 56: 91-97. http://dx.doi.org/10.1099/ijs.0.63967-0 PMid:16403872   Laguerre G, Allard MR, Revoy F and Amarger N (1994). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60: 56-63. PMid:16349165 PMCid:201269   Lloyd AT and Sharp PM (1993). Evolution of the recA gene and the molecular phylogeny of bacteria. J. Mol. Evol. 37: 399-407. http://dx.doi.org/10.1007/BF00178869 PMid:8308907   Lu YL, Chen WF, Wang ET, Guan SH, et al. (2009). Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 32: 351-361. http://dx.doi.org/10.1016/j.syapm.2008.10.004 PMid:19195810   Martens M, Delaere M, Coopman R, De Vos P, et al. (2007). Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol. 57: 489-503. http://dx.doi.org/10.1099/ijs.0.64344-0 PMid:17329774   Martens M, Dawyndt P, Coopman R, Gillis M, et al. (2008). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int. J. Syst. Evol. Microbiol. 58: 200-214. http://dx.doi.org/10.1099/ijs.0.65392-0 PMid:18175710   Menna P, Hungria M, Barcellos FG, Bangel EV, et al. (2006). Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst. Appl. Microbiol. 29: 315-332. http://dx.doi.org/10.1016/j.syapm.2005.12.002 PMid:16442259   Mnasri B, Mrabet M, Laguerre G, Aouani ME, et al. (2007). Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch. Microbiol. 187: 79-85. http://dx.doi.org/10.1007/s00203-006-0173-x PMid:17019605   Muresu R, Polone E, Sulas L, Baldan B, et al. (2008). Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol. Ecol. 63: 383-400. http://dx.doi.org/10.1111/j.1574-6941.2007.00424.x PMid:18194345   Naser SM, Thompson FL, Hoste B, Gevers D, et al. (2005). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151: 2141-2150. http://dx.doi.org/10.1099/mic.0.27840-0 PMid:16000705   Qian J, Kwon SW and Parker MA (2003). rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol. Lett. 219: 159-165. http://dx.doi.org/10.1016/S0378-1097(03)00043-0   Stackebrandt E and Goebel BM (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. http://dx.doi.org/10.1099/00207713-44-4-846   Szeto WW, Zimmerman JL, Sundaresan V and Ausubel FM (1984). A Rhizobium meliloti symbiotic regulatory gene. Cell 36: 1035-1043. http://dx.doi.org/10.1016/0092-8674(84)90053-9   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Tan ZY, Wang ET, Peng GX, Zhu ME, et al. (1999). Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int. J. Syst. Bacteriol. 49 Pt 4: 1457-1469. http://dx.doi.org/10.1099/00207713-49-4-1457 PMid:10555327   Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. http://dx.doi.org/10.1093/nar/25.24.4876 PMid:9396791 PMCid:147148   van Berkum P, Terefework Z, Paulin L, Suomalainen S, et al. (2003). Discordant phylogenies within the rrn loci of Rhizobia. J. Bacteriol. 185: 2988-2998. http://dx.doi.org/10.1128/JB.185.10.2988-2998.2003 PMid:12730157 PMCid:154066   Vauterin L and Vauterin P (1992). Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1: 37-41.   Vincent J (1970). A Manual for the Practical Study of the Root-Nodule Bacteria. International Biological Programme, Londres.   Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, et al. (2005). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst. Appl. Microbiol. 28: 702-716. http://dx.doi.org/10.1016/j.syapm.2005.05.007 PMid:16261860   Wang FQ, Wang ET, Liu J, Chen Q, et al. (2007). Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int. J. Syst. Evol. Microbiol. 57: 1192-1199. http://dx.doi.org/10.1099/ijs.0.64363-0 PMid:17551028   Wang LL, Wang ET, Liu J, Li Y, et al. (2006). Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb. Ecol. 52: 436-443. http://dx.doi.org/10.1007/s00248-006-9116-y PMid:16897296   Wei GH, Zhang ZX, Chen C, Chen WM, et al. (2008). Phenotypic and genetic diversity of rhizobia isolated from nodules of the legume genera Astragalus, Lespedeza and Hedysarum in northwestern China. Microbiol. Res. 163: 651-662. http://dx.doi.org/10.1016/j.micres.2006.09.005 PMid:17207980   Weisburg WG, Barns SM, Pelletier DA and Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. PMid:1987160 PMCid:207061   Willems A (2006). The taxonomy of rhizobia: an overview. Plant Soil 287: 3-14. http://dx.doi.org/10.1007/s11104-006-9058-7   Yan XR, Chen WF, Fu JF, Lu YL, et al. (2007). Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol. Lett. 271: 265-273. http://dx.doi.org/10.1111/j.1574-6968.2007.00727.x PMid:17451445   Yang SS, Bellogin RA, Buendia A, Camacho M, et al. (2001). Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J. Biotechnol. 91: 243-255. http://dx.doi.org/10.1016/S0168-1656(01)00340-6
W. Chen, Liu, X., Huang, Y., Jiang, Y., Zou, Q., and Lin, C., Improved method for predicting protein fold patterns with ensemble classifiers, vol. 11, pp. 174-181, 2012.
Boisvert S, Marchand M, Laviolette F and Corbeil J (2008). HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels. Retrovirology 5: 110. http://dx.doi.org/10.1186/1742-4690-5-110 PMid:19055831    PMCid:2637298 Breimin L (2001). Random forests. Machine Learn. 45: 5-32. http://dx.doi.org/10.1023/A:1010933404324 Cai CZ, Han LY, Ji ZL, Chen X, et al. (2003). SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31: 3692-3697. http://dx.doi.org/10.1093/nar/gkg600 PMid:12824396    PMCid:169006 Call ME, Schnell JR, Xu C, Lutz RA, et al. (2006). The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127: 355-368. http://dx.doi.org/10.1016/j.cell.2006.08.044 PMid:17055436 Chen K and Kurgan L (2007). PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 23: 2843-2850. http://dx.doi.org/10.1093/bioinformatics/btm475 PMid:17942446 Chou KC (2004). Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem. 11: 2105-2134. PMid:15279552 Ding CHQ and Dubchak I (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17: 349-358. http://dx.doi.org/10.1093/bioinformatics/17.4.349 PMid:11301304 Douglas SM, Chou JJ and Shih WM (2007). DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. U. S. A. 104: 6644-6648. http://dx.doi.org/10.1073/pnas.0700930104 PMid:17404217    PMCid:1871839 Gao WN, Wei DQ, Li Y, Gao H, et al. (2007). Agaritine and its derivatives are potential inhibitors against HIV proteases. Med. Chem. 3: 221-226. http://dx.doi.org/10.2174/157340607780620644 PMid:17504192 Honda M, Kawai H, Shirota Y, Yamashita T, et al. (2005). cDNA microarray analysis of autoimmune hepatitis, primary biliary cirrhosis and consecutive disease manifestation. J. Autoimmun. 25: 133-140. http://dx.doi.org/10.1016/j.jaut.2005.03.009 PMid:16150573 Li Y, Wei DQ, Gao WN, Gao H, et al. (2007). Computational approach to drug design for oxazolidinones as antibacterial agents. Med. Chem. 3: 576-582. http://dx.doi.org/10.2174/157340607782360362 PMid:18045208 Murzin AG, Brenner SE, Hubbard T and Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536-540. http://dx.doi.org/10.1016/S0022-2836(05)80134-2 Nanni L (2006). A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69: 2434-2437. http://dx.doi.org/10.1016/j.neucom.2006.01.026 Niels L, Mark H and Eibe F (2005). Logistic model trees. Machine Learn 95: 161-205. Pu X, Guo J, Leung H and Lin Y (2007). Prediction of membrane protein types from sequences and position-specific scoring matrices. J. Theor. Biol. 247: 259-265. http://dx.doi.org/10.1016/j.jtbi.2007.01.016 PMid:17433369 Schaffer AA, Aravind L, Madden TL, Shavirin S, et al. (2001). Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29: 2994-3005. http://dx.doi.org/10.1093/nar/29.14.2994 PMid:11452024    PMCid:55814 Schnell JR and Chou JJ (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451: 591-595. http://dx.doi.org/10.1038/nature06531 PMid:18235503    PMCid:3108054 Shen HB and Chou KC (2006). Ensemble classifier for protein fold pattern recognition. Bioinformatics 22: 1717-1722. http://dx.doi.org/10.1093/bioinformatics/btl170 PMid:16672258 Shen HB and Chou KC (2009). Predicting protein fold pattern with functional domain and sequential evolution information. J. Theor. Biol. 256: 441-446. http://dx.doi.org/10.1016/j.jtbi.2008.10.007 PMid:18996396 Sumner M, Frank E and Hall MA (2005). Speeding up Logistic Model Tree Induction. In: Proceedings of 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal (Jorge A, ed.). Springer, Germany, 675-683. Vendruscolo M and Dobson CM (2005). A glimpse at the organization of the protein universe. PNAS 102: 5641-5642. http://dx.doi.org/10.1073/pnas.0500274102 PMid:15827120    PMCid:556289
X. Liu, Guo, X. Y., Xu, X. Z., Wu, M., Zhang, X., Li, Q., Ma, P. P., Zhang, Y., Wang, C. Y., Geng, F. J., Qin, C. H., Liu, L., Shi, W. H., Wang, Y. C., and Yu, Y., Novel single nucleotide polymorphisms of the bovine methyltransferase 3b gene and their association with meat quality traits in beef cattle, vol. 11, pp. 2569-2577, 2012.
Amara K, Ziadi S, Hachana M, Soltani N, et al. (2010). DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci. 101: 1722-1730. http://dx.doi.org/10.1111/j.1349-7006.2010.01569.x PMid:20398054   Barres R and Zierath JR (2011). DNA methylation in metabolic disorders. Am. J. Clin. Nutr. 93: 897S-900. http://dx.doi.org/10.3945/ajcn.110.001933 PMid:21289222   de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, et al. (2011). Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 22: 1-12. http://dx.doi.org/10.1007/s10552-010-9659-6 PMid:20960050 PMCid:3002163   Fan YY, Zan LS, Wang HB and Yang YJ (2010). Study on the relationship between polymorphism of PLIN gene and carcass and meat quality traits in Qinchuan cattle. Chin. J. Anim. Vet. Sci. 41: 268-273.   Fraga MF, Ballestar E, Paz MF, Ropero S, et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. U. S. A. 102: 10604-10609. http://dx.doi.org/10.1073/pnas.0500398102 PMid:16009939 PMCid:1174919   Guo X, Liu X, Xu X, Wu M, et al. (2012). The expression levels of DNMT3a/3b and their relationship with meat quality in beef cattle. Mol. Biol. Rep. 39: 5473-5479. http://dx.doi.org/10.1007/s11033-011-1349-2 PMid:22193622   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, et al. (2009). Genetic variation in healthy oldest-old. PLoS One 4: e6641. http://dx.doi.org/10.1371/journal.pone.0006641 PMid:19680556 PMCid:2722017   Hoey AJ, Reich MM, Davis G, Shorthose R, et al. (1995). Beta 2-adrenoceptor densities do not correlate with growth, carcass quality, or meat quality in cattle. J. Anim. Sci. 73: 3281-3286. PMid:8586585   Ji AG, Zhou ZK, Zhang LP, Yang RJ, et al. (2009). PON1 gene SNPs and association with growth and carcass traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 122-128.   Kamei Y, Suganami T, Ehara T, Kanai S, et al. (2010). Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity 18: 314-321. http://dx.doi.org/10.1038/oby.2009.246 PMid:19680236   Kurita S, Higuchi H, Saito Y, Nakamoto N, et al. (2010). DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci. 101: 1431-1439. http://dx.doi.org/10.1111/j.1349-7006.2010.01565.x PMid:20398055   Li WF, Yang RJ, Gan QF, Zhang LP, et al. (2009). Polymorphism of PRKAG3 gene and Its association with carcass and meat quality traits in beef cattle. Acta Vet. Zootechnica Sin. 40: 1106-1111.   Liu Y, Li K, Liu WJ, Wang JF, et al. (2009). Study on the effect of down-regulation of DNMT1 on cell proliferation, metastasis ability of esophageal squamous cell carcinoma cell line EC9706 cells and its related mechanisms. China Oncol. 19: 826-830.   Maier S and Olek A (2002). Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr. 132: 2440S-2443S. PMid:12163708   Okano M, Bell DW, Haber DA and Li E (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247-257. http://dx.doi.org/10.1016/S0092-8674(00)81656-6   Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085. PMid:12542147   Tidball JG and Spencer MJ (2002). Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J. Physiol. 545: 819-828. http://dx.doi.org/10.1113/jphysiol.2002.024935 PMid:12482888 PMCid:2290726   Turek-Plewa J and Jagodzinski PP (2005). The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10: 631-647. PMid:16341272   Wang X, Zhu H, Snieder H, Su S, et al. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 8: 87. http://dx.doi.org/10.1186/1741-7015-8-87 PMid:21176133 PMCid:3016263   Yu Y, Zhang H, Tian F, Zhang W, et al. (2008). An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines. PLoS One 3: e2672. http://dx.doi.org/10.1371/journal.pone.0002672 PMid:18648519 PMCid:2481300
X. Liu, Wang, Y., and Wang, S. W., QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa), vol. 11, pp. 717-724, 2012.
Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567. http://dx.doi.org/10.1007/s001220050596 Del Rosario AR, Briones VP, Vidal AJ and Juliano BO (1968). Composition and endosperm structure of developing and mature rice kernel. Cereal Chem. 45: 225-235. Doyle JJ (1991). DNA Protocols for Plants-CTAB Total DNA Isolation. In: Molecular Techniques in Taxonomy (Hewitt GM, ed.). Springer, Berlin Heidelberg, New York, 283-293. http://dx.doi.org/10.1007/978-3-642-83962-7_18 Fujita N, Yoshida M, Kondo T, Saito K, et al. (2007). Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 144: 2009-2023. http://dx.doi.org/10.1104/pp.107.102533 PMid:17586688    PMCid:1949899 He P, Li SG, Qian Q, Ma YQ, et al. (1999). Genetic analysis of rice grain quality. Theor. Appl. Genet. 98: 502-508. http://dx.doi.org/10.1007/s001220051098 Huang JX (2006). Genetic Analysis and QTL Mapping Research of Appearance Quality Traits in Indica Rice. Master’s thesis, Xiamen University, Xiamen. Kang HG, Park S, Matsuoka M and An G (2005). White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J. 42: 901-911. http://dx.doi.org/10.1111/j.1365-313X.2005.02423.x PMid:15941402 Koh HJ, Son YH, Heu MH, Lee HS, et al. (1999). Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.). Euphytica 106: 57-62. http://dx.doi.org/10.1023/A:1003575016035 Lander ES, Green P, Abrahamson J, Barlaw A, et al. (1987). Mapmarker: an interactive computer package for maps of experimental and nutural populations. Genomics 1: 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3 Li J, Xiao J, Grandillo S, Jiang L, et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47: 697-704. http://dx.doi.org/10.1139/g04-029 PMid:15284874 Lincoln S, Daly M and Lander ES (1992). Construction Genetic Maps with MAPMARKER/EXP 3.0. Whitehead Institute Technical Report. 2nd edn. Whitehead Institute for Biomedical Research, Cambridge. Lisle AJ, Martin M and Fitzgerald MA (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem. 77: 627-632. http://dx.doi.org/10.1094/CCHEM.2000.77.5.627 Mo HD (1995). Identification of genetic control for endosperm traits in cereals. Acta Genet. Sin. 22: 126-132. Nagato K and Ebata M (1959). Studies on white-core rice kernel II. On the physical properties of the kernel. Proc. Crop Sci. Soc. Jpn. 28: 46-50. http://dx.doi.org/10.1626/jcs.28.46 NSPRC (1999). National Standard of People Republic of China High Quality Paddy, GB/T 17891-1999. Standards Press of China, Zhejiang. Pooni HS, Kumar I and Khush GS (1992). A comprehensive model for disomically inherited metrical traits expressed in triploid tissues. Heredity 69: 166-174. http://dx.doi.org/10.1038/hdy.1992.110 Ryoo N, Yu C, Park CS, Baik MY, et al. (2007). Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 26: 1083-1095. http://dx.doi.org/10.1007/s00299-007-0309-8 PMid:17297616 Shi CH, Wu JG, Lou XB, Zhu J, et al. (2002). Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res. 76: 1-9. http://dx.doi.org/10.1016/S0378-4290(02)00011-4 Tan YF, Xing YZ, Li JX, Yu SB, et al. (2000). Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101: 823-829. http://dx.doi.org/10.1007/s001220051549 Tashiro T and Wardlaw IF (1991). The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust. J. Agric. Res. 42: 485-496. http://dx.doi.org/10.1071/AR9910485 Wan XY, Wan JM, Weng JF, Jiang L, et al. (2005). Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110: 1334-1346. http://dx.doi.org/10.1007/s00122-005-1976-x PMid:15809851 Yano M and Sasaki T (1997). Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35: 145-153. http://dx.doi.org/10.1023/A:1005764209331 PMid:9291968 Zeng ZB (1994). Precision mapping of quantitative trait loci. Genetics 136: 1457-1468. PMid:8013918    PMCid:1205924 Zhou L, Chen L, Jiang L, Zhang W, et al. (2009). Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor. Appl. Genet. 118: 581-590. http://dx.doi.org/10.1007/s00122-008-0922-0 PMid:19020855 Zhu J and Weir BS (1994). Analysis of cytoplasmic and maternal effects II. Genetic models for triploid endosperm. Theor. Appl. Genet. 89: 160-166.