Publications

Found 7 results
Filters: Author is W.J. Li  [Clear All Filters]
2013
S. Q. Yan, Li, Y. M., Bai, C. Y., Ding, X. M., Li, W. J., Hou, J. N., Zhao, Z. H., and Sun, J. H., Development and characterization of polymorphic microsatellite markers for Chinese raccoon dog (Nyctereutes procyonoides procyonoides), vol. 12, pp. 6351-6355, 2013.
D. X. Wang, Ma, H., Zhang, Y. L., Duan, A. A., Li, W. J., and Li, Z. H., Paeonia (Paeoniaceae) expressed sequence tag-derived microsatellite markers transferred to Paeonia delavayi, vol. 12, pp. 1278-1282, 2013.
Cristancho M and Escobar C (2008). Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix. Genet. Mol. Res. 7: 1186-1192. http://dx.doi.org/10.4238/vol7-4gmr493 PMid:19048497   Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochem. Bull. 19: 11-15.   Feng GM (1992). Paeonia lutea (in Chinese). Science Press, Beijing.   Hong DY and Pan KY (1999). Taxonomical history and revision of Paeonia sect. Moutan DC. (Paeoniaceae). Acta Phytotaxonom. Sin. 37: 351-368.   IUCN Red List Categories and Criteria Version 3.1 (2001). Prepared by the IUCN Species Survival Commission, IUCN, Gland and Cambridge.   La Rota M, Kantety RV, Yu JK and Sorrells ME (2005). Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6: 23. http://dx.doi.org/10.1186/1471-2164-6-23 PMid:15720707 PMCid:550658   Li K, Zheng BQ, Wang Y and Bu WS (2012a). Numeric dynamics of natural populations of Paeonia delavayi (Paeoniaceae). Chin. J. Plant Ecol. 36: 522-529. http://dx.doi.org/10.3724/SP.J.1258.2012.00522   Li WJ, Ma H, Li ZH, Wan YM, et al. (2012b). Thirty-four Musa (Musaceae) expressed sequence tag-derived microsatellite markers transferred to Musella lasiocarpa. Genet. Mol. Res. 11: 2094-2098. http://dx.doi.org/10.4238/2012.August.6.13 PMid:22911593   Ma H, Wang L, Wan Y, Li H, et al. (2012). A set of novel microsatellite markers developed for Luculia yunnanensis (Rubiaceae), an endangered plant endemic to Yunnan, China. Int. J. Mol. Sci. 13: 534-539. http://dx.doi.org/10.3390/ijms13010534 PMid:22312269 PMCid:3269703   Pan KY (1979). Flora of China (in Chinese). Science Press, Beijing.   Raymond M and Rousset F (1995). GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.   Rozen S and Skaletsky HJ (2000). Primer 3: Bioinformatics Methods and Protocols. In: Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, New Jersey.
2012
W. J. Li, Zhang, B., Huang, G. W., Kang, G. P., Liang, M. Z., and Chen, L. B., Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon), vol. 11, pp. 4418-4431, 2012.
Cai HW and Wang XK (1992). Classification of Asian rices by esterase isozymes. Southeast China J. agric. Sci. 5: 19-22.   Caicedo AL, Williamson SH, Hernandez RD, Boyko A, et al. (2007). Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3: 1745-1756. http://dx.doi.org/10.1371/journal.pgen.0030163 PMid:17907810 PMCid:1994709   Chang TT (1976). The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25: 435-441. http://dx.doi.org/10.1007/BF00041576   Chen WB, Sato YI, Nakamura I and Nakai H (1994). Indica-Japonica differentiation in Chinese rice landraces. Euphytica 74: 195-201. http://dx.doi.org/10.1007/BF00040401   Cheng KS (1985). A statistical evaluation of the classification of rice cultivars into hsien and keng subspecies. RGN 2: 46-48.   Duan SH, Li SQ, Li YS, Xiong Y, et al. (2007). Distribution and SNPs of the rice CMS-related gene in AA-genome of Oryza species. Yi Chuan 29: 455-461. http://dx.doi.org/10.1360/yc-007-0455 PMid:17548309   Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. http://dx.doi.org/10.2307/2408678   Fukui K, Ohmido N and Khush GS (1994). Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor. Appl. Genet. 87: 893-899. http://dx.doi.org/10.1007/BF00225782   Garris AJ, Tai TH, Coburn J, Kresovich S, et al. (2005). Genetic structure and diversity in Oryza sativa L. Genetics 169: 1631-1638. http://dx.doi.org/10.1534/genetics.104.035642 PMid:15654106 PMCid:1449546   Harushima Y, Kurata N, Yano M, Sasaki T, et al. (1998). Detection of interactive loci for genotype segregation in F2 populations between japonica and indica rice crosses. Breed. Sci. 4: 82-101.   Hirai A, Isshibashi T, Morikami A, Iwatsuki N, et al. (1985). Rice chloroplast DNA: a physical map and the location of the genes for the large subunit of ribulose 1, 5-bisphosphate carboxylase and the 32 kD photosystem II reaction center protein. Theor. Appl. Genet. 70: 117-122.   Hiratsuka J, Shimada H, Whittier R, Ishibashi T, et al. (1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194. http://dx.doi.org/10.1007/BF02464880 PMid:2770692   Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, et al. (2000). Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet. 100: 1311-1320. http://dx.doi.org/10.1007/s001220051440   Kanno A, Watanabe N, Nakamura I and Hirai A (1993). Variations in chloroplast DNA from rice (Oryza sativa): Differences between deletions mediated by short direct-repeat sequences within a single species. Theor. Appl. Genet. 86: 579-584. http://dx.doi.org/10.1007/BF00838712   Khush GS (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25-34. http://dx.doi.org/10.1023/A:1005810616885 PMid:9291957   Kumagai M, Wang L and Ueda S (2010). Genetic diversity and evolutionary relationships in genus Oryza revealed by using highly variable regions of chloroplast DNA. Gene 462: 44-51. http://dx.doi.org/10.1016/j.gene.2010.04.013 PMid:20450965   Li DY, Liang YM and Yang HQ (2001). Genetic diversity of agricultural crops germplams in Guangxi. Acta Bot. Yunnanica 23: 18-21.   Londo JP, Chiang YC, Hung KH, Chiang TY, et al. (2006). Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. U. S. A. 103: 9578-9583. http://dx.doi.org/10.1073/pnas.0603152103 PMid:16766658 PMCid:1480449   Morishima H and Oka HI (1960). The pattern of interspecific variation in the genus Oryza: Its quantitative representation by statistical methods. Evolution 14: 153-165. http://dx.doi.org/10.2307/2405822   Nakano M, Yoshinura A and Iwata N (1992). Phylogenetic study of cultivated rice and its wild relatives by RFLP. Rice Genet. Newsl. 9: 132-134.   Nei M and Kumar S (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York. PMCid:27115   Nishikawa T, Vaughan DA and Kadowaki K (2005). Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor. Appl. Genet. 110: 696-705. http://dx.doi.org/10.1007/s00122-004-1895-2 PMid:15650813   Rogers OS and Bendich AJ (1988). Extraction of DNA Plant Tissue, Plant Molecular. In: Plant Molecular Biology Manual (Gelvin SB, Schilpe RA and Verna DS, eds.). Kluwer Academic Publishers, Dordecht, 1-10.   Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015   Sato YI and Morishima H (1988). Distribution of the genes causing F2 chlorosis in rice cultivars of the Indica and Japonica types. Theor. Appl. Genet. 75: 723-727. http://dx.doi.org/10.1007/BF00265594   Second G (1982). Origin of the genic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jap. J. Genet. 57: 25-57. http://dx.doi.org/10.1266/jjg.57.25   Shahid MM, Nishikawa T, Fukuoka S, Njenga PK, et al. (2004). The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340: 133-139. http://dx.doi.org/10.1016/j.gene.2004.06.008 PMid:15556301   Shaw J, Lickey EB, Beck JT, Farmer SB, et al. (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92: 142-166. http://dx.doi.org/10.3732/ajb.92.1.142 PMid:21652394   Sun CQ, Mao L, Wang ZS, Zhu LH, et al. (1995). A Primary Study of Cultivated Rice (Oryza sativa) and Common Chinese Wild Rice (O. rufipogon) Using Random Amplified Polymorphic DNA (RAPD). Chin. J. Rice Sci. 9: 1-6.   Sun CQ, Wang XK, Yoshimura A and Iwata N (1997). Indica-japonica differentiation of chloroplast DNA in O. rufipogon Griff. and O. sativa L. J. Agric. Biotech. 5: 319-324.   Sun CQ, Wang XK, Li ZC, Yoshimura A, et al. (2001). Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor. Appl. Genet. 102: 157-162. http://dx.doi.org/10.1007/s001220051631   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Tang J, Xia H, Cao M, Zhang X, et al. (2004). A comparison of rice chloroplast genomes. Plant Physiol. 135: 412-420. http://dx.doi.org/10.1104/pp.103.031245 PMid:15122023 PMCid:429394   Tian X, Zheng J, Hu S and Yu J (2006). The rice mitochondrial genomes and their variations. Plant Physiol. 140: 401-410. http://dx.doi.org/10.1104/pp.105.070060 PMid:16384910 PMCid:1361312   Vaughan DA, Morishima H and Kadowaki K (2003). Diversity in the Oryza genus. Curr. Opin. Plant Biol. 6: 139-146. http://dx.doi.org/10.1016/S1369-5266(03)00009-8   Wang XK and Sun CQ (2000). Origin and evolution of biodiversity and classification of Oryza sativa L. J. Plant Genet. Resour. 1: 48-53.   Wang XK, Cai HW, Sun CQ, Wang ZS, et al. (1994). The preliminary study on the primitive type of Oryza rufipogon Griff. in China and its Hsien-Keng differentiation. Chin. J. Rice Sci. 8: 205-210.   Wang ZY and Tanksley SD (1989). Restriction fragment length polymorphism in Oryza sativa L. Genome 32: 1113-1118. http://dx.doi.org/10.1139/g89-563   Yuan LP (1987). The stratagement thinking of hybrid rice breeding. Hybrid Rice 2: 1-3.
Q. Chen, Li, W. J., Wan, Y. Y., Yu, C. D., and Li, W. G., Fibroblast growth factor receptor 4 Gly388Arg polymorphism associated with severity of gallstone disease in a Chinese population, vol. 11, pp. 548-555, 2012.
Bange J, Prechtl D, Cheburkin Y, Specht K, et al. (2002). Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res. 62: 840-847. PMid:11830541 Buch S, Schafmayer C, Volzke H, Becker C, et al. (2007). A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet. 39: 995-999. http://dx.doi.org/10.1038/ng2101 PMid:17632509 Buch S, Schafmayer C, Volzke H, Seeger M, et al. (2010). Loci from a genome-wide analysis of bilirubin levels are associated with gallstone risk and composition. Gastroenterology 139: 1942-1951. http://dx.doi.org/10.1053/j.gastro.2010.09.003 PMid:20837016 Chan T, Yaghoubian A, Rosing D, Lee E, et al. (2008). Total bilirubin is a useful predictor of persisting common bile duct stone in gallstone pancreatitis. Am. Surg. 74: 977-980. PMid:18942626 Choi M, Moschetta A, Bookout AL, Peng L, et al. (2006). Identification of a hormonal basis for gallbladder filling. Nat. Med. 12: 1253-1255. http://dx.doi.org/10.1038/nm1501 PMid:17072310 Donovan JM (1999). Physical and metabolic factors in gallstone pathogenesis. Gastroenterol. Clin. North Am. 28: 75-97. http://dx.doi.org/10.1016/S0889-8553(05)70044-3 Falvella FS, Frullanti E, Galvan A, Spinola M, et al. (2009). FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung. Int. J. Cancer 124: 2880- 2885. http://dx.doi.org/10.1002/ijc.24302 PMid:19296538 Hylemon PB, Zhou H, Pandak WM, Ren S, et al. (2009). Bile acids as regulatory molecules. J. Lipid Res. 50: 1509-1520. http://dx.doi.org/10.1194/jlr.R900007-JLR200 PMid:19346331    PMCid:2724047 Jiang ZY, Han TQ, Suo GJ, Feng DX, et al. (2004). Polymorphisms at cholesterol 7alpha-hydroxylase, apolipoproteins B and E and low density lipoprotein receptor genes in patients with gallbladder stone disease. World J. Gastroenterol. 10: 1508-1512. PMid:15133863 Johnston DE and Kaplan MM (1993). Pathogenesis and treatment of gallstones. N. Engl. J. Med. 328: 412-421. http://dx.doi.org/10.1056/NEJM199302113280608 PMid:8421460 Jones S (2008). Mini-review: endocrine actions of fibroblast growth factor 19. Mol. Pharm. 5: 42-48. http://dx.doi.org/10.1021/mp700105z PMid:18179175 Lammert F and Sauerbruch T (2005). Mechanisms of disease: the genetic epidemiology of gallbladder stones. Nat. Clin. Pract. Gastroenterol. Hepatol. 2: 423-433. http://dx.doi.org/10.1038/ncpgasthep0257 Miyasaka K, Takata Y and Funakoshi A (2002). Association of cholecystokinin A receptor gene polymorphism with cholelithiasis and the molecular mechanisms of this polymorphism. J. Gastroenterol. 37 (Suppl 14): 102-106. PMid:12572876 Russell DW and Setchell KD (1992). Bile acid biosynthesis. Biochemistry 31: 4737-4749. http://dx.doi.org/10.1021/bi00135a001 PMid:1591235 Srivastava A, Pandey SN, Choudhuri G and Mittal B (2008). Role of genetic variant A-204C of cholesterol 7alpha-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer. Mol. Genet. Metab. 94: 83-89. http://dx.doi.org/10.1016/j.ymgme.2007.11.014 PMid:18178499 Strasberg SM (1997). Cholelithiasis and acute cholecystitis. Baillieres Clin. Gastroenterol. 11: 643-661. http://dx.doi.org/10.1016/S0950-3528(97)90014-2 Strasberg SM and Clavien PA (1992). Cholecystolithiasis: lithotherapy for the 1990s. Hepatology 16: 820-839. http://dx.doi.org/10.1002/hep.1840160332 PMid:1387104 Wang J, Stockton DW and Ittmann M (2004). The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin. Cancer Res. 10: 6169-6178. http://dx.doi.org/10.1158/1078-0432.CCR-04-0408 PMid:15448004 Wang J, Yu W, Cai Y, Ren C, et al. (2008). Altered fibroblast growth factor receptor 4 stability promotes prostate cancer progression. Neoplasia 10: 847-856. PMid:18670643    PMCid:2481572 Ye Y, Shi Y, Zhou Y, Du C, et al. (2010). The fibroblast growth factor receptor-4 Arg388 allele is associated with gastric cancer progression. Ann. Surg. Oncol. 17: 3354-3361. http://dx.doi.org/10.1245/s10434-010-1323-6 PMid:20844967 Yu C, Wang F, Kan M, Jin C, et al. (2000). Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J. Biol. Chem. 275: 15482-15489. http://dx.doi.org/10.1074/jbc.275.20.15482 PMid:10809780 Yu C, Wang F, Jin C, Huang X, et al. (2005). Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J. Biol. Chem. 280: 17707-17714. http://dx.doi.org/10.1074/jbc.M411771200 PMid:15750181
W. J. Li, Ma, H., Li, Z. H., Wan, Y. M., Liu, X. X., and Zhou, C. L., Thirty-four Musa (Musaceae) expressed sequence tag-derived microsatellite markers transferred to Musella lasiocarpa, vol. 11, pp. 2094-2098, 2012.
Cristancho M and Escobar C (2008). Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix. Genet. Mol. Res. 7: 1186-1192. http://dx.doi.org/10.4238/vol7-4gmr493 PMid:19048497 Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Goudet J (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86: 485-486. Huang X and Madan A (1999). CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877. http://dx.doi.org/10.1101/gr.9.9.868 PMid:10508846 PMCid:310812 IUCN (2001). IUCN Red List Categories and Criteria, Version3.1. Prepared by the IUCN Species Survival Commission. IUCN, Gland, Switzerland, and Cambridge. La Rota M, Kantety RV, Yu JK and Sorrells ME (2005). Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6: 23. http://dx.doi.org/10.1186/1471-2164-6-23 PMid:15720707 PMCid:550658 Li XY, Shangguan LF, Song CN, Wang C, et al. (2010). Analysis of expressed sequence tags from Prunus mume flower and development of simple sequence repeat markers. BMC Genet. 11: 66. http://dx.doi.org/10.1186/1471-2156-11-66 PMid:20626882 PMCid:2920227 Liu AZ, Kress WJ and Long CL (2003). Customary use and conservational attention to Musella lasiocarpa (Musaceae): a monotypic genus endemic to China. Econ. Bot. 57: 279-281. http://dx.doi.org/10.1663/0013-0001(2003)057[0279:TEOMLM]2.0.CO;2 Long CL, Selena A, Wang XR, Liu YT, et al. (2008). Why Musella lasiocarpa (Musaceae) is used in Southwest China to feed pigs. Econ. Bot. 62: 182-186. http://dx.doi.org/10.1007/s12231-008-9013-z Ma H, Pan QJ, Wang L, Li ZH, et al. (2011). Musella lasiocarpa var. rubribracteata (Musaceae), a new variety from Sichuan, China. Novon 21: 349-353. http://dx.doi.org/10.3417/2010125 Rozen S and Skaletsky HJ (2000). Primer 3: Bioinformatics Methods and Protocols. In: Methods in Molecular Biology (Krawetz S and Misener S, eds.). Humana Press, New Jersey, 365-386. Available at [http://frodo.wi.mit.edu/primer3/]. Accessed November 1, 2010. Wu DL and Kress WJ (2000). Flora of China: Musaceae. In: Flagellariaceae through Marantaceae (Wu CY and Raven PH, eds.). Vol. 24. Science Press, Beijing, 314-318. Yang CY, Huang Y and Long CL (2009). Isolation and characterization of 17 polymorphic microsatellite loci for Musella lasiocarpa (Musaceae). HortScience 44: 2041-2042.