Publications

Found 6 results
Filters: Author is A.P. Del Vesco  [Clear All Filters]
2012
E. Gasparino, Del Vesco, A. P., Guimarães, S. E. F., da Silva, S. C. C., Marcato, S. M., Neto, A. Rde Oliveir, and Sousa, K. R. S., Age-related changes in mitochondrial UCP, ANT and COX III gene expression in the breast muscle of quails (Coturnix coturnix japonica), vol. 11, pp. 1981-1989, 2012.
Abe T, Mujahid A, Sato K, Akiba Y, et al. (2006). Possible role of avian uncoupling protein in down-regulating mitochondrial superoxide production in skeletal muscle of fasted chickens. FEBS Lett. 580: 4815-4822. http://dx.doi.org/10.1016/j.febslet.2006.07.070 PMid:16904672   Barazzoni R and Nair KS (2001). Changes in uncoupling protein-2 and -3 expression in aging rat skeletal muscle, liver, and heart. Am. J. Physiol. Endocrinol. Metab. 280: E413-419. PMid:11171595   Barazzoni R, Short KR and Nair KS (2000). Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J. Biol. Chem. 275: 3343-3347. http://dx.doi.org/10.1074/jbc.275.5.3343 PMid:10652323   Beyer RE, Starnes JW, Edington DW, Lipton RJ, et al. (1984). Exercise-induced reversal of age-related declines of oxidative reactions, mitochondrial yield, and flavins in skeletal muscle of the rat. Mech. Ageing Dev. 24: 309-323. http://dx.doi.org/10.1016/0047-6374(84)90116-7   Bottje W and Carstens GE (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species. J. Anim. Sci. 87: E48-E63. http://dx.doi.org/10.2527/jas.2008-1379 PMid:19028862   Bottje W, Pumford NR, Ojano-Dirain C, Iqbal M, et al. (2006). Feed Efficiency and Mitochondrial Function. Poult. Sci. 85: 8-14. PMid:16493939   Bottje W, Brand MD, Ojano-Dirain C, Lassiter K, et al. (2009). Mitochondrial proton leak kinetics and relationship with feed efficiency within a single genetic line of male broilers. Poult. Sci. 88: 1683-1693. http://dx.doi.org/10.3382/ps.2009-00100 PMid:19590084   Ferrandiz ML, Martinez M, De Juan E, Diez A, et al. (1994). Impairment of mitochondrial oxidative phosphorylation in the brain of aged mice. Brain. Res. 644: 335-338. http://dx.doi.org/10.1016/0006-8993(94)91699-3   Iqbal M, Pumford NR, Tang ZX, Lassiter K, et al. (2005). Compromised liver mitochondrial function and complex activity in low feed efficient broilers are associated with higher oxidative stress and differential protein expression. Poult. Sci. 84: 933-941. PMid:15971533   Iritani N, Sugimoto T, Fukuda H and Kimura T (2002). Changes in UCP family expressions in rat tissues due to diet and aging. J. Nutr. Sci. Vitaminol. 48: 410-416. http://dx.doi.org/10.3177/jnsv.48.410   Johnson DE, Ferrel CL and Jenkin TG (2003). The history of energetic efficiency research: Where have we been and where are we going? J. Anim. Sci. 81: E27-E38.   Kemp TJ, Causton HC and Clerk A (2003). Changes in gene expression induced by H2O2 in cardiac myocytes. Biochem. Biophys. Res. Commun. 307: 416-421. http://dx.doi.org/10.1016/S0006-291X(03)01215-4   Kerner J, Turkaly PJ, Minkler PE and Hoppel CL (2001). Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content. Am. J. Physiol. Endocrinol. Metab. 281: E1054-E1062. PMid:11595663   Krueger WK, Carstens GE, Lancaster PA and Slay LJ (2008). Relationship between residual feed intake and apparent nutrient digestibility in growing calves. J. Anim. Sci. 86: 25.   Ledesma A, de Lacoba MG and Rial E (2002). The mitochondrial uncoupling proteins. Genome Biol. 3: S3015. http://dx.doi.org/10.1186/gb-2002-3-12-reviews3015   Lehninger AL, Nelson DL and Cox MM (1993). Principles of Biochemistry. 2nd edn. Worth Publishers, New York.   Nicoletti VG, Marino VM, Cuppari C, Licciardello D, et al. (2005). Effect of antioxidant diets on mitochondrial gene expression in rat brain during aging. Neurochem. Res. 30: 737-752. http://dx.doi.org/10.1007/s11064-005-6867-7 PMid:16187210   NRC (1994). Nutrient Requirement of Poultry. 9th edn. Natl. Acad. Press, Washington.   Ojano-Dirain C, Toyomizu M, Wing T, Cooper M, et al. (2007). Gene expression in breast muscle and duodenum from low and high feed efficient broilers. Poult. Sci. 86: 372-381. PMid:17234853   Parker N, Affourtit C, Vidal-Puig A and Brand MD (2008). Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochem. J. 412: 131-139. http://dx.doi.org/10.1042/BJ20080006 PMid:18251717 PMCid:2474556   Rebrin I, Zicker S, Wedekind KJ, Paetau-Robinson I, et al. (2005). Effect of antioxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouse. Free Radic. Biol. Med. 39: 549-557. http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.008 PMid:16043026 PMCid:2837083   Ronsein GE, Miyamoto S, Bechara E, Di Mascio P, et al. (2006). Oxidação de proteínas por oxigênio singlete: mecanismos de dano, estratégias para detecção e implicações biológicas. Química Nova 29: 563-568. http://dx.doi.org/10.1590/S0100-40422006000300027   Rostagno HS, Albino LFT, Donzele JL and Gomes PC (2005). Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements. 2nd edn. Department of Animal Science, Viçosa Federal University, Viçosa.   SAS (2000). User's Guide: Statistics. Statistical Analysis Systems Institute Inc., Cary.   Schauss AC, Huang H, Choi SY, Xu L, et al. (2010). A novel cell-free mitochondrial fusion assay amenable for high-throughput screenings of fusion modulators. BMC Biol. 8: 100. http://dx.doi.org/10.1186/1741-7007-8-100 PMid:20659315 PMCid:2919466   Scheffler I (1999). Mitochondria. Wiley-Liss Inc., New York. http://dx.doi.org/10.1002/0471223891 PMCid:16336   Tengan CH, Gabbai AA and Moraes CT (1998). Deleções do DNA mitocondrial no envelhecimento: efeito da disfunção na fosforilação oxidativa. Rev. Psiq. Clin. 25: 126-131.   Vidal-Puig AJ (2000). Uncoupling expectations. Nat. Genet. 26: 387-388. http://dx.doi.org/10.1038/82489 PMid:11101825   Voge JL, Santiago CA, Aad PY, Goad DW, et al. (2004). Quantification of insulin-like growth factor binding protein mRNA using real-time PCR in bovine granulosa and theca cells: effect of estradiol, insulin, and gonadotropins. Domest. Anim. Endocrinol. 26: 241-258. http://dx.doi.org/10.1016/j.domaniend.2003.11.002 PMid:15036378   Zhang L, Yue HY, Wu SG, Xu L, et al. (2010). Transport stress in broilers. II. Superoxide production, adenosine phosphate concentrations, and mRNA levels of avian uncoupling protein, avian adenine nucleotide translocator, and avian peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscles. Poult. Sci. 89: 393-400. http://dx.doi.org/10.3382/ps.2009-00281 PMid:20181853
E. Gasparino, Neto, A. R. Oliveira, Del Vesco, A. P., Pires, A. V., Batista, E., Voltolini, D. M., and Souza, K. R. S., Expression of growth genes in response to glycerol use in Japanese quail diets, vol. 11, pp. 3063-3068, 2012.
Archer JA, Richardson EC, Herd RM and Arthur PF (1999). Potential for selection to improve efficiency of feed use in beef cattle: a review. Aust. J. Agric. Res. 50: 147-161. http://dx.doi.org/10.1071/A98075   Bottje WG and Carstens GE (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species. J. Anim. Sci. 87: E48-E63. http://dx.doi.org/10.2527/jas.2008-1379 PMid:19028862   Castro Bulle FC, Paulino PV, Sanches AC and Sainz RD (2007). Growth, carcass quality, and protein and energy metabolism in beef cattle with different growth potentials and residual feed intakes. J. Anim. Sci. 85: 928-936. http://dx.doi.org/10.2527/jas.2006-373 PMid:17178805   Cerrate S, Yan F, Wang Z, Coto C, et al. (2006). Evaluation of glycerine from biodisel production as a feed ingredient for broilers. Int. J. Poult. Sci. 11: 1001-1007.   Curtis SE (1983). Environmental Management in Animal Agriculture. Iowa State University Press, Ames, Iowa.   Doppenberg J and Van Der Aar P (2007). The Nutritional Value of Biodiesel By-Products. Part 2: Glycerine. A High- Energy Liquid Product, Glycerine Offers Livestock Producers the Option of a Cost Effective, Alternative Feed Ingredient. Feed Business Asia, 42-43.   Dozier WA, III, Kerr BJ, Corzo A, Kidd MT, et al. (2008). Apparent metabolizable energy of glycerin for broiler chickens. Poult Sci. 87: 317-322. http://dx.doi.org/10.3382/ps.2007-00309 PMid:18212375   Havenstein GB, Ferket PR and Qureshi MA (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci. 82: 1500-1508. PMid:14601725   Johnson DE, Ferrell CL and Jenkins TG (2003). The history of energetic efficiency research: Where have we been and where are we going? J. Anim. Sci. 81 (Suppl 1): E27-E38.   Krueger WK, Carstens GE, Lancaster PA and Slay LJ (2008). Relationship between residual feed intake and apparent nutrient digestibility in growing calves. J. Anim. Sci. 86: 25.   Lauterio TJ and Scanes CG (1988). The role of thyroid hormones in the growth hormone response to protein restriction in the domestic fowl (Gallus domesticus). J. Endocrinol. 117: 223-228. http://dx.doi.org/10.1677/joe.0.1170223 PMid:3132524   National Research Council (1994). Nutrient Requirement of Poultry. 9th Revised Edition. National Academy Press, Washington.   Rosebrough RW and McMurtry JP (1993). Protein and energy relationships in the broiler chicken. Effects of protein quantity and quality on metabolism. Br. J. Nutr. 70: 667-678. http://dx.doi.org/10.1079/BJN19930162 PMid:8297905   Rostagno HS, Albino LFT, Donzele JL and Gomes PC (2005). Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements. 2ª ed. Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa.   Scanes CG, Griminger P and Buonomo FC (1981). Effects of dietary protein restriction on circulating concentrations of growth hormone in growing domestic fowl (Gallus domesticus). Proc. Soc. Exp. Biol. Med. 168: 334-337. PMid:7323075   Voge JL, Santiago CA, Aad PY, Goad DW, et al. (2004). Quantification of insulin-like growth factor binding protein mRNA using real-time PCR in bovine granulosa and theca cells: effect of estradiol, insulin, and gonadotropins. Domest. Anim. Endocrinol. 26: 241-258. http://dx.doi.org/10.1016/j.domaniend.2003.11.002 PMid:15036378   Yunianto VD, Hayashi K, Kaneda S, Ohtsuka A, et al. (1997). Effect of environmental temperature on muscle protein turnover and heat production in tube-fed broiler chickens. Br. J. Nutr. 77: 897-909. http://dx.doi.org/10.1079/BJN19970088 PMid:9227187