Publications

Found 22 results
Filters: Author is J. Huang  [Clear All Filters]
2016
R. Ju, Lin, L., Long, Y., Zhang, J., Huang, J., Ju, R., Lin, L., Long, Y., Zhang, J., and Huang, J., Clinical efficacy of therapeutic intervention for subclinical hypothyroidism during pregnancy, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the Capital Health Development Scientific Research Special Projects (#2011-1002-04) and the Capital Health Development and Scientific Research Projects (#2016-1-1113). REFERENCES Abalovich M, Amino N, Barbour LA, Cobin RH, et al (2007). Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 92 (Suppl): S1-S47. http://dx.doi.org/10.1210/jc.2007-0141 Casey BM, Dashe JS, Wells CE, McIntire DD, et al (2005). Subclinical hypothyroidism and pregnancy outcomes. Obstet. Gynecol. 105: 239-245. http://dx.doi.org/10.1097/01.AOG.0000152345.99421.22 Cleary-Goldman J, Malone FD, Lambert-Messerlian G, Sullivan L, et al (2008). Maternal thyroid hypofunction and pregnancy outcome. Obstet. Gynecol. 112: 85-92. http://dx.doi.org/10.1097/AOG.0b013e3181788dd7 Chinese Society of Endocrinology and Chinese Society of Perinatal Medicineet al (2012). Guidelines for the diagnosis and treatment of thyroid disease in pregnancy and postpartum. Chin. J. Endocrinol. Metabol. 28: 354-371. Gallas PR, Stolk RP, Bakker K, Endert E, et al (2002). Thyroid dysfunction during pregnancy and in the first postpartum year in women with diabetes mellitus type 1. Eur. J. Endocrinol. 147: 443-451. http://dx.doi.org/10.1530/eje.0.1470443 Haddow JE, Palomaki GE, Allan WC, Williams JR, et al (1999). Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341: 549-555. http://dx.doi.org/10.1056/NEJM199908193410801 Helfand M, Redfern CC, American College of Physicianset al (1998). Clinical guideline, part 2. Screening for thyroid disease: an update. Ann. Intern. Med. 129: 144-158. http://dx.doi.org/10.7326/0003-4819-129-2-199807150-00020 Hollowell JGJrGarbePL, Miller DT, et al (1999). Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341: 2016-2017. Lin L, Zhang XL, Long Y, et al (2014). Analysis of thyroid peroxidase antibody in early pregnancy. Genet. Mol. Res. 13: 5107-5114. http://dx.doi.org/10.4238/2014.July.7.3 Liu N, Bian XM, Gao YS, Qi H, et al (2009). Clinical analysis of hypothyroidism or subclinical hypothyroidism during pregnancy. Chin. J. Perinatal Med. 12: 186-189. Negro R, Schwartz A, Gismondi R, Tinelli A, et al (2010). Universal screening versus case finding for detection and treatment of thyroid hormonal dysfunction during pregnancy. J. Clin. Endocrinol. Metab. 95: 1699-1707. http://dx.doi.org/10.1210/jc.2009-2009 Rovet JF, et al (1999). Congenital hypothyroidism: long-term outcome. Thyroid 9: 741-748. http://dx.doi.org/10.1089/thy.1999.9.741 Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartumet al (2011). Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21: 1081-1125. http://dx.doi.org/10.1089/thy.2011.0087 Wartofsky L, et al (2013). Combination L-T3 and L-T4 therapy for hypothyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 20: 460-466. http://dx.doi.org/10.1097/01.med.0000432611.03732.49 Yu XH, Wang WW, Teng WP, Shan ZY, et al (2010). Levothyroxine treatment for subclinical hypothyroidism during pregnancy on the prospective study of the effect of offspring brain development. Chin. J. Endocrinol. Metab. 26: 921-925.
R. Ju, Lin, L., Long, Y., Zhang, J., Huang, J., Ju, R., Lin, L., Long, Y., Zhang, J., and Huang, J., Clinical efficacy of therapeutic intervention for subclinical hypothyroidism during pregnancy, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the Capital Health Development Scientific Research Special Projects (#2011-1002-04) and the Capital Health Development and Scientific Research Projects (#2016-1-1113). REFERENCES Abalovich M, Amino N, Barbour LA, Cobin RH, et al (2007). Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 92 (Suppl): S1-S47. http://dx.doi.org/10.1210/jc.2007-0141 Casey BM, Dashe JS, Wells CE, McIntire DD, et al (2005). Subclinical hypothyroidism and pregnancy outcomes. Obstet. Gynecol. 105: 239-245. http://dx.doi.org/10.1097/01.AOG.0000152345.99421.22 Cleary-Goldman J, Malone FD, Lambert-Messerlian G, Sullivan L, et al (2008). Maternal thyroid hypofunction and pregnancy outcome. Obstet. Gynecol. 112: 85-92. http://dx.doi.org/10.1097/AOG.0b013e3181788dd7 Chinese Society of Endocrinology and Chinese Society of Perinatal Medicineet al (2012). Guidelines for the diagnosis and treatment of thyroid disease in pregnancy and postpartum. Chin. J. Endocrinol. Metabol. 28: 354-371. Gallas PR, Stolk RP, Bakker K, Endert E, et al (2002). Thyroid dysfunction during pregnancy and in the first postpartum year in women with diabetes mellitus type 1. Eur. J. Endocrinol. 147: 443-451. http://dx.doi.org/10.1530/eje.0.1470443 Haddow JE, Palomaki GE, Allan WC, Williams JR, et al (1999). Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341: 549-555. http://dx.doi.org/10.1056/NEJM199908193410801 Helfand M, Redfern CC, American College of Physicianset al (1998). Clinical guideline, part 2. Screening for thyroid disease: an update. Ann. Intern. Med. 129: 144-158. http://dx.doi.org/10.7326/0003-4819-129-2-199807150-00020 Hollowell JGJrGarbePL, Miller DT, et al (1999). Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341: 2016-2017. Lin L, Zhang XL, Long Y, et al (2014). Analysis of thyroid peroxidase antibody in early pregnancy. Genet. Mol. Res. 13: 5107-5114. http://dx.doi.org/10.4238/2014.July.7.3 Liu N, Bian XM, Gao YS, Qi H, et al (2009). Clinical analysis of hypothyroidism or subclinical hypothyroidism during pregnancy. Chin. J. Perinatal Med. 12: 186-189. Negro R, Schwartz A, Gismondi R, Tinelli A, et al (2010). Universal screening versus case finding for detection and treatment of thyroid hormonal dysfunction during pregnancy. J. Clin. Endocrinol. Metab. 95: 1699-1707. http://dx.doi.org/10.1210/jc.2009-2009 Rovet JF, et al (1999). Congenital hypothyroidism: long-term outcome. Thyroid 9: 741-748. http://dx.doi.org/10.1089/thy.1999.9.741 Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartumet al (2011). Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21: 1081-1125. http://dx.doi.org/10.1089/thy.2011.0087 Wartofsky L, et al (2013). Combination L-T3 and L-T4 therapy for hypothyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 20: 460-466. http://dx.doi.org/10.1097/01.med.0000432611.03732.49 Yu XH, Wang WW, Teng WP, Shan ZY, et al (2010). Levothyroxine treatment for subclinical hypothyroidism during pregnancy on the prospective study of the effect of offspring brain development. Chin. J. Endocrinol. Metab. 26: 921-925.
Y. Y. Wu, He, J. B., Li, A. H., Fang, N. Y., He, W. W., Dang, L. L., Zeng, G. Y., Huang, J., Bao, Y. M., Zhang, H. S., Wu, Y. Y., He, J. B., Li, A. H., Fang, N. Y., He, W. W., Dang, L. L., Zeng, G. Y., Huang, J., Bao, Y. M., and Zhang, H. S., Population structure analysis and association mapping of blast resistance in indica rice (Oryza sativa L.) landraces, vol. 15, p. -, 2016.
Y. Y. Wu, He, J. B., Li, A. H., Fang, N. Y., He, W. W., Dang, L. L., Zeng, G. Y., Huang, J., Bao, Y. M., Zhang, H. S., Wu, Y. Y., He, J. B., Li, A. H., Fang, N. Y., He, W. W., Dang, L. L., Zeng, G. Y., Huang, J., Bao, Y. M., and Zhang, H. S., Population structure analysis and association mapping of blast resistance in indica rice (Oryza sativa L.) landraces, vol. 15, p. -, 2016.
J. Huang, Hou, F. L., Zhang, A. Y., Li, Z. L., Huang, J., Hou, F. L., Zhang, A. Y., and Li, Z. L., Protective effect of the polarity of macrophages regulated by IL-37 on atherosclerosis, vol. 15, p. -, 2016.
J. Huang, Hou, F. L., Zhang, A. Y., Li, Z. L., Huang, J., Hou, F. L., Zhang, A. Y., and Li, Z. L., Protective effect of the polarity of macrophages regulated by IL-37 on atherosclerosis, vol. 15, p. -, 2016.
J. Xia, Zheng, X. G., Adili, G. Z., Wei, Y. R., Ma, W. G., Xue, X. M., Mi, X. Y., Yi, Z., Chen, S. J., Du, W., Muhan, M., Duhaxi, C., Han, T., Gudai, B., Huang, J., Xia, J., Zheng, X. G., Adili, G. Z., Wei, Y. R., Ma, W. G., Xue, X. M., Mi, X. Y., Yi, Z., Chen, S. J., Du, W., Muhan, M., Duhaxi, C., Han, T., Gudai, B., and Huang, J., Sequence analysis of peste des petits ruminants virus from ibexes in Xinjiang, China, vol. 15, p. -, 2016.
J. Xia, Zheng, X. G., Adili, G. Z., Wei, Y. R., Ma, W. G., Xue, X. M., Mi, X. Y., Yi, Z., Chen, S. J., Du, W., Muhan, M., Duhaxi, C., Han, T., Gudai, B., Huang, J., Xia, J., Zheng, X. G., Adili, G. Z., Wei, Y. R., Ma, W. G., Xue, X. M., Mi, X. Y., Yi, Z., Chen, S. J., Du, W., Muhan, M., Duhaxi, C., Han, T., Gudai, B., and Huang, J., Sequence analysis of peste des petits ruminants virus from ibexes in Xinjiang, China, vol. 15, p. -, 2016.
2013
N. M. Liu, Tian, J., Wang, W. W., Han, G. F., Cheng, J., Huang, J., and Zhang, J. Y., Effect of erythropoietin on mesenchymal stem cell differentiation and secretion in vitro in an acute kidney injury microenvironment, vol. 12, pp. 6477-6487, 2013.
J. M. Liu, Liu, J. N., Wei, M. T., He, Y. Z., Zhou, Y., Song, X. B., Ying, B. W., and Huang, J., Effect of IL-18 gene promoter polymorphisms on prostate cancer occurrence and prognosis in Han Chinese population, vol. 12, pp. 820-829, 2013.
Alexandrakis MG, Passam FH, Sfiridaki K, Moschandrea J, et al. (2004). Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk. Res. 28: 259-266. http://dx.doi.org/10.1016/S0145-2126(03)00261-3   Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, et al. (2007). Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 56: 1787-1797. http://dx.doi.org/10.1002/art.22705 PMid:17530707   Bushley AW, Ferrell R, McDuffie K, Terada KY, et al. (2004). Polymorphisms of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecol. Oncol. 95: 672-679. http://dx.doi.org/10.1016/j.ygyno.2004.08.024 PMid:15581980   Charles AD (1999). Interleukin-18. Methods 19: 121-132. http://dx.doi.org/10.1006/meth.1999.0837 PMid:10525448   Cho ML, Jung YO, Moon YM, Min SY, et al. (2006). Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol. Lett. 103: 159-166. http://dx.doi.org/10.1016/j.imlet.2005.10.020 PMid:16368150   Desai KV, Michalowska AM, Kondaiah P, Ward JM, et al. (2004). Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Mol. Endocrinol. 18: 2895-2907. http://dx.doi.org/10.1210/me.2004-0033 PMid:15358834   Dinarello CA (1999). IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103: 11-24. http://dx.doi.org/10.1016/S0091-6749(99)70518-X   Eissa SA, Zaki SA, El-Maghraby SM and Kadry DY (2005). Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J. Egypt. Natl. Canc. Inst. 17: 51-55. PMid:16353083   Figg WD, Franks ME, Venzon D, Duray P, et al. (2004). Gleason score and pretreatment prostate-specific antigen in survival among patients with stage D2 prostate cancer. World J. Urol. 22: 425-430. http://dx.doi.org/10.1007/s00345-004-0443-7 PMid:15592675   Fujita K, Ewing CM, Sokoll LJ, Elliott DJ, et al. (2008). Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate 68: 872-882. http://dx.doi.org/10.1002/pros.20755 PMid:18361406 PMCid:2562260   Fujita K, Ewing CM, Isaacs WB and Pavlovich CP (2011). Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int. J. Cancer 129: 424-432. http://dx.doi.org/10.1002/ijc.25705 PMid:20878981 PMCid:3040782   Giedraitis V, He B, Huang WX and Hillert J (2001). Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J. Neuroimmunol. 112: 146-152. http://dx.doi.org/10.1016/S0165-5728(00)00407-0   Gillies SD, Young D, Lo KM and Roberts S (1993). Biological activity and in vivo clearance of antitumor antibody/ cytokine fusion proteins. Bioconjug. Chem. 4: 230-235. http://dx.doi.org/10.1021/bc00021a008 PMid:8324014   Han MY, Zheng S, Yu JM, Peng JP, et al. (2004). Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity. J. Zhejiang Univ. Sci. 5: 472-476. http://dx.doi.org/10.1631/jzus.2004.0472 PMid:14994440   Jung MK, Song HK, Kim KE, Hur DY, et al. (2006). IL-18 enhances the migration ability of murine melanoma cells through the generation of ROI and the MAPK pathway. Immunol. Lett. 107: 125-130. http://dx.doi.org/10.1016/j.imlet.2006.08.004 PMid:17014914   Kalina U, Ballas K, Koyama N, Kauschat D, et al. (2000). Genomic organization and regulation of the human interleukin-18 gene. Scand. J. Immunol. 52: 525-530. http://dx.doi.org/10.1046/j.1365-3083.2000.00836.x PMid:11119255   Kim KE, Song H, Kim TS, Yoon D, et al. (2007). Interleukin-18 is a critical factor for vascular endothelial growth factor-enhanced migration in human gastric cancer cell lines. Oncogene 26: 1468-1476. http://dx.doi.org/10.1038/sj.onc.1209926 PMid:17001321   Lebel-Binay S, Thiounn N, De PG, Vieillefond A, et al. (2003). IL-18 is produced by prostate cancer cells and secreted in response to interferons. Int. J. Cancer 106: 827-835. http://dx.doi.org/10.1002/ijc.11285 PMid:12918059   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 19: 519-523. http://dx.doi.org/10.1038/cr.2009.33 PMid:19290020   Liu J, Liu J, Zhou Y, Li S, et al. (2011). Association between promoter variants of interleukin-18 and schizophrenia in a Han Chinese population. DNA Cell Biol. 30: 913-917. http://dx.doi.org/10.1089/dna.2011.1221 PMid:21510800   Liu Y, Lin N, Huang L, Xu Q, et al. (2007). Genetic polymorphisms of the interleukin-18 gene and risk of prostate cancer. DNA Cell Biol. 26: 613-618. http://dx.doi.org/10.1089/dna.2007.0600 PMid:17688413   Marshall DJ, Rudnick KA, McCarthy SG, Mateo LR, et al. (2006). Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine 24: 244-253. http://dx.doi.org/10.1016/j.vaccine.2005.07.087 PMid:16135392   Merendino RA, Gangemi S, Ruello A, Bene A, et al. (2001). Serum levels of interleukin-18 and sICAM-1 in patients affected by breast cancer: preliminary considerations. Int. J. Biol. Markers 16: 126-129. PMid:11471895   Okamura H, Tsutsi H, Komatsu T, Yutsudo M, et al. (1995). Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378: 88-91. http://dx.doi.org/10.1038/378088a0 PMid:7477296   Park H, Byun D, Kim TS, Kim YI, et al. (2001). Enhanced IL-18 expression in common skin tumors. Immunol. Lett. 79: 215-219. http://dx.doi.org/10.1016/S0165-2478(01)00278-4   Pratesi C, Bortolin MT, Bidoli E, Tedeschi R, et al. (2006). Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunol. Immunother. 55: 23-30. http://dx.doi.org/10.1007/s00262-005-0688-z PMid:16059673   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Stacey SN, Sulem P, Jonasdottir A, Masson G, et al. (2011). A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet. 43: 1098-1103. http://dx.doi.org/10.1038/ng.926 PMid:21946351 PMCid:3263694   Takagawa T, Tamura K, Takeda N, Tomita T, et al. (2005). Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population. Inflamm. Bowel. Dis. 11: 1038-1043. http://dx.doi.org/10.1097/01.MIB.0000182868.67025.b9 PMid:16306765   Tse BW, Russell PJ, Lochner M, Förster I, et al. (2011). IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms. PLoS One 6: e24241. http://dx.doi.org/10.1371/journal.pone.0024241 PMid:21935389 PMCid:3174151   Wang F, Zou YF, Feng XL, Su H, et al. (2011). CYP17 gene polymorphisms and prostate cancer risk: a meta-analysis based on 38 independent studies. Prostate 71: 1167-1177. http://dx.doi.org/10.1002/pros.21332   Wentzensen N, Black A, Jacobs K, Yang HP, et al. (2011). Genetic variation on 9p22 is associated with abnormal ovarian ultrasound results in the prostate, lung, colorectal, and ovarian cancer screening trial. PLoS One 6: e21731. http://dx.doi.org/10.1371/journal.pone.0021731 PMid:21750727 PMCid:3131287   Xia D, Li F and Xiang J (2004). Engineered fusion hybrid vaccine of IL-18 gene-modified tumor cells and dendritic cells induces enhanced antitumor immunity. Cancer Biother. Radiopharm. 19: 322-330. http://dx.doi.org/10.1089/1084978041424990 PMid:15285878   Ye ZB, Ma T, Li H, Jin XL, et al. (2007). Expression and significance of intratumoral interleukin-12 and interleukin-18 in human gastric carcinoma. World J. Gastroenterol. 13: 1747-1751. PMid:17461482   Yoon- DY, Cho YS, Park JW, Kim SH, et al. (2004). Up-regulation of reactive oxygen species (ROS) and resistance to Fas-mediated apoptosis in the C33A cervical cancer cell line transfected with IL-18 receptor. Clin. Chem. Lab. Med. 42: 499-506. PMid:15202785   Zeegers MP, Khan HS, Schouten LJ, van Dijk BA, et al. (2011). Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur. J. Hum. Genet. 19: 118-120. http://dx.doi.org/10.1038/ejhg.2010.133 PMid:20700145 PMCid:3039500   Zhou W, Chen Z, Hu W, Shen M, et al. (2011). Association of short tandem repeat polymorphism in the promoter of prostate cancer antigen 3 gene with the risk of prostate cancer. PLoS One 6: e20378. http://dx.doi.org/10.1371/journal.pone.0020378 PMid:21655300 PMCid:3105025
Y. H. Yang, Zhao, F., Feng, D. N., Wang, J. J., Wang, C. F., Huang, J., Nie, X. J., Xia, G. Z., Chen, G. M., and Yu, Z. H., Wilms' tumor suppressor gene mutations in girls with sporadic isolated steroid-resistant nephrotic syndrome, vol. 12, pp. 6184-6191, 2013.
2012
F. - B. Guo, Wei, W., Wang, X. L., Lin, H., Ding, H., Huang, J., and Rao, N., Co-evolution of genomic islands and their bacterial hosts revealed through phylogenetic analyses of 17 groups of homologous genomic islands, vol. 11, pp. 3735-3743, 2012.
Chu KH, Qi J, Yu Z-G and Anh V (2004). Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol. Biol. Evol. 21: 200-206. http://dx.doi.org/10.1093/molbev/msh002 PMid:14595102   Dobrindt U, Hochhut B, Hentschel U and Hacker J (2004). Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2: 414-424. http://dx.doi.org/10.1038/nrmicro884 PMid:15100694   Doolittle WF (1999). Phylogenetic classification and the universal tree. Science 284: 2124-2129. http://dx.doi.org/10.1126/science.284.5423.2124 PMid:10381871   Gao L, Qi J, Wei H, Sun Y, et al. (2003). Molecular phylogeny of coronaviruses including human SARS-CoV. Chin. Sci. Bull. 48: 1170-1174.   Garcia-Vallvé S, Romeu A and Palau J (2000). Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 10: 1719-1725. http://dx.doi.org/10.1101/gr.130000 PMid:11076857 PMCid:310969   Garcia-Vallvé S, Guzman E, Montero MA and Romeu A (2003). HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31: 187-189. http://dx.doi.org/10.1093/nar/gkg004 PMid:12519978 PMCid:165451   Gascuel O (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14: 685-695. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025808 PMid:9254330   Gogarten JP and Townsend JP (2005). Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3: 679-687. http://dx.doi.org/10.1038/nrmicro1204 PMid:16138096   Hacker J and Kaper JB (2000). Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641-679. http://dx.doi.org/10.1146/annurev.micro.54.1.641 PMid:11018140   Hacker J and Carniel E (2001). Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2: 376-381. PMid:11375927 PMCid:1083891   Hentschel U and Hacker J (2001). Pathogenicity islands: the tip of the iceberg. Microbes Infect. 3: 545-548. http://dx.doi.org/10.1016/S1286-4579(01)01410-1   Ho Sui SJ, Fedynak A, Hsiao WW, Langille MG, et al. (2009). The association of virulence factors with genomic islands. PLoS One 4: e8094. http://dx.doi.org/10.1371/journal.pone.0008094 PMid:19956607 PMCid:2779486   Juhas M, van der Meer JR, Gaillard M, Harding RM, et al. (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33: 376-393. http://dx.doi.org/10.1111/j.1574-6976.2008.00136.x PMid:19178566 PMCid:2704930   Jun SR, Sims GE, Wu GA and Kim SH (2010). Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proc. Natl. Acad. Sci. U. S. A. 107: 133-138. http://dx.doi.org/10.1073/pnas.0913033107 PMid:20018669 PMCid:2806744   Keeling PJ and Palmer JD (2008). Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9: 605-618. http://dx.doi.org/10.1038/nrg2386 PMid:18591983   Langille MG, Hsiao WW and Brinkman FS (2008). Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9: 329. http://dx.doi.org/10.1186/1471-2105-9-329 PMid:18680607 PMCid:2518932   Langille MG, Hsiao WW and Brinkman FS (2010). Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 8: 373-382. http://dx.doi.org/10.1038/nrmicro2350 PMid:20395967   Lawrence JG (1999). Gene transfer, speciation, and the evolution of bacterial genomes. Curr. Opin. Microbiol. 2: 519-523. http://dx.doi.org/10.1016/S1369-5274(99)00010-7   Lawrence JG and Ochman H (1997). Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44: 383-397. http://dx.doi.org/10.1007/PL00006158 PMid:9089078   Nakamura Y, Itoh T, Matsuda H and Gojobori T (2004). Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 36: 760-766. http://dx.doi.org/10.1038/ng1381 PMid:15208628   Ochman H, Lawrence JG and Groisman EA (2000). Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304. http://dx.doi.org/10.1038/35012500 PMid:10830951   Pennisi E (1998). Genome data shake tree of life. Science 280: 672-674. http://dx.doi.org/10.1126/science.280.5364.672 PMid:9599142   Qi J, Wang B and Hao BI (2004). Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J. Mol. Evol. 58: 1-11. http://dx.doi.org/10.1007/s00239-003-2493-7 PMid:14743310   Sims GE and Kim SH (2011). Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs). Proc. Natl. Acad. Sci. U. S. A. 108: 8329-8334. http://dx.doi.org/10.1073/pnas.1105168108 PMid:21536867 PMCid:3100984   Sims GE, Jun SR, Wu GA and Kim SH (2009a). Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions. Proc. Natl. Acad. Sci. U. S. A. 106: 2677-2682. http://dx.doi.org/10.1073/pnas.0813249106 PMid:19188606 PMCid:2634796   Sims GE, Jun SR, Wu GA and Kim SH (2009b). Whole-genome phylogeny of mammals: evolutionary information in genic and nongenic regions. Proc. Natl. Acad. Sci. U. S. A. 106: 17077-17082. http://dx.doi.org/10.1073/pnas.0909377106 PMid:19805074 PMCid:2761373   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Touzain F, Denamur E, Medigue C, Barbe V, et al. (2010). Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biol. 11: R45. http://dx.doi.org/10.1186/gb-2010-11-4-r45 PMid:20433696 PMCid:2884548   Vernikos GS and Parkhill J (2006). Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22: 2196-2203. http://dx.doi.org/10.1093/bioinformatics/btl369 PMid:16837528   Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, et al. (2001). Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1: 8. http://dx.doi.org/10.1186/1471-2148-1-8 PMid:11734060 PMCid:60490   Wolf YI, Rogozin IB, Grishin NV and Koonin EV (2002). Genome trees and the tree of life. Trends Genet. 18: 472-479. http://dx.doi.org/10.1016/S0168-9525(02)02744-0   Wu GA, Jun SR, Sims GE and Kim SH (2009). Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method. Proc. Natl. Acad. Sci. U. S. A. 106: 12826-12831. http://dx.doi.org/10.1073/pnas.0905115106 PMid:19553209 PMCid:2722272   Xu Z and Hao B (2009). CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res. 37: W174-W178. http://dx.doi.org/10.1093/nar/gkp278 PMid:19398429 PMCid:2703908   Yoon SH, Hur CG, Kang HY, Kim YH, et al. (2005). A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6: 184. http://dx.doi.org/10.1186/1471-2105-6-184 PMid:16033657 PMCid:1188055   Yoon SH, Park YK, Lee S, Choi D, et al. (2007). Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res. 35: D395-D400. http://dx.doi.org/10.1093/nar/gkl790 PMid:17090594 PMCid:1669727
Z. H. Yu, Wang, D. J., Meng, D. C., Huang, J., and Nie, X. J., Mutations in NPHS1 in a Chinese child with congenital nephrotic syndrome, vol. 11, pp. 1460-1464, 2012.
Aya K, Tanaka H and Seino Y (2000). Novel mutation in the nephrin gene of a Japanese patient with congenital nephrotic syndrome of the Finnish type. Kidney Int. 57: 401-404. http://dx.doi.org/10.1046/j.1523-1755.2000.00859.x PMid:10652016   Heeringa SF, Vlangos CN, Chernin G, Hinkes B, et al. (2008). Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrol. Dial. Transplant. 23: 3527-3533. http://dx.doi.org/10.1093/ndt/gfn271 PMid:18503012 PMCid:2720813   Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, et al. (2007). Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119: e907-e919. http://dx.doi.org/10.1542/peds.2006-2164 PMid:17371932   Ismaili K, Pawtowski A, Boyer O, Wissing KM, et al. (2009). Genetic forms of nephrotic syndrome: a single-center experience in Brussels. Pediatr. Nephrol. 24: 287-294. http://dx.doi.org/10.1007/s00467-008-0953-4 PMid:18709391   Jalanko H (2009). Congenital nephrotic syndrome. Pediatr. Nephrol. 24: 2121-2128. http://dx.doi.org/10.1007/s00467-007-0633-9 PMid:17968594 PMCid:2753773   Kestilä M, Lenkkeri U, Mannikko M, Lamerdin J, et al. (1998). Positionally cloned gene for a novel glomerular protein - nephrin - is mutated in congenital nephrotic syndrome. Mol. Cell 1: 575-582. http://dx.doi.org/10.1016/S1097-2765(00)80057-X   Lahdenkari AT, Kestila M, Holmberg C, Koskimies O, et al. (2004). Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 65: 1856-1863. http://dx.doi.org/10.1111/j.1523-1755.2004.00583.x PMid:15086927   Lee BH, Ahn YH, Choi HJ, Kang HK, et al. (2009). Two Korean infants with genetically confirmed congenital nephrotic syndrome of Finnish type. J. Korean Med. Sci. 24 (Suppl 1): S210-S214. http://dx.doi.org/10.3346/jkms.2009.24.S1.S210 PMid:19194555 PMCid:2633182   Lenkkeri U, Mannikko M, McCready P, Lamerdin J, et al. (1999). Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am. J. Hum. Genet. 64: 51-61. http://dx.doi.org/10.1086/302182 PMid:9915943 PMCid:1377702   Pätäri-Sampo A, Ihalmo P and Holthofer H (2006). Molecular basis of the glomerular filtration: nephrin and the emerging protein complex at the podocyte slit diaphragm. Ann. Med. 38: 483-492. http://dx.doi.org/10.1080/07853890600978149 PMid:17101539   Santín S, Garcia-Maset R, Ruiz P, Gimenez I, et al. (2009). Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int. 76: 1268-1276. http://dx.doi.org/10.1038/ki.2009.381 PMid:19812541   Schoeb DS, Chernin G, Heeringa SF, Matejas V, et al. (2010). Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS). Nephrol. Dial. Transplant. 25: 2970-2976. http://dx.doi.org/10.1093/ndt/gfq088 PMid:20172850 PMCid:2948833   Shi Y, Ding J, Liu JC, Wang H, et al. (2005). NPHS1 mutations in a Chinese family with congenital nephrotic syndrome. Zhonghua Er Ke Za Zhi 43: 805-809. PMid:16316524   Wu LQ, Hu JJ, Xue JJ and Liang DS (2011). Two novel NPHS1 mutations in a Chinese family with congenital nephrotic syndrome. Genet. Mol. Res. 10: 2517-2522. http://dx.doi.org/10.4238/2011.October.18.1 PMid:22009864
R. M. Rana, Dong, S., Ali, Z., Huang, J., and Zhang, H. S., Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.), vol. 11, pp. 3676-3687, 2012.
Cao Y and Klionsky DJ (2007). Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17: 839-849. http://dx.doi.org/10.1038/cr.2007.78 PMid:17893711   Chen X, Gu Z, Xin D, Hao L, et al. (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genom. 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 PMid:21356527   Fujiki Y, Yoshimoto K and Ohsumi Y (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143: 1132-1139. http://dx.doi.org/10.1104/pp.106.093864 PMid:17259285 PMCid:1820928   Gu X and Vander Velden K (2002). DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein 3687 Regulation of ATG6 homologs by abiotic stresses and hormones family. Bioinformatics 18: 500-501. http://dx.doi.org/10.1093/bioinformatics/18.3.500 PMid:11934757   Harrison-Lowe NJ and Olsen LJ (2008). Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4.   Hashiguchi Y, Furuta Y, Kawahara R and Nishida M (2007). Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene 396: 170-179. http://dx.doi.org/10.1016/j.gene.2007.03.015 PMid:17467198   Horton P, Park KJ, Obayashi T and Nakai K (2006). Protein Subcellular Localization Prediction with WoLF PSORT. Citeseer.   Huang J, Wang MM, Bao YM, Sun SJ, et al. (2008). SRWD: a novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.). Gene 424: 71-79. http://dx.doi.org/10.1016/j.gene.2008.07.027 PMid:18755256   Hung KT and Kao CH (2004). Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. J. Plant Physiol. 161: 1347-1357. http://dx.doi.org/10.1016/j.jplph.2004.05.011 PMid:15658805   Jung KH, Dardick C, Bartley LE, Cao P, et al. (2008). Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 3: e3337. http://dx.doi.org/10.1371/journal.pone.0003337 PMid:18836531 PMCid:2556097   Kametaka S, Okano T, Ohsumi M and Ohsumi Y (1998). Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273: 22284-22291. http://dx.doi.org/10.1074/jbc.273.35.22284 PMid:9712845   Liu Y, Schiff M, Czymmek K, Talloczy Z, et al. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567-577. http://dx.doi.org/10.1016/j.cell.2005.03.007 PMid:15907470   Meng XB, Zhao WS, Lin RM, Wang M, et al. (2006). Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Seq. 17: 41-48. http://dx.doi.org/10.1080/10425170500476509 PMid:16753816   Michiorri S, Gelmetti V, Giarda E, Lombardi F, et al. (2010). The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death. Differ. 17: 962-974. http://dx.doi.org/10.1038/cdd.2009.200 PMid:20057503   Mochida K, Kawaura K, Shimosaka E, Kawakami N, et al. (2006). Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol. Genet. Genom. 276: 304-312. http://dx.doi.org/10.1007/s00438-006-0120-1 PMid:16832693   Moriyasu Y and Ohsumi Y (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111: 1233-1241. PMid:12226358 PMCid:161001   Nielsen R and Yang Z (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929-936. PMid:9539414 PMCid:1460041   Qin G, Ma Z, Zhang L, Xing S, et al. (2007). Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 17: 249-263. PMid:17339883   Ramalingam J, Pathan MS, Feril O, Ross K, et al. (2006). Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49: 1324-1340. http://dx.doi.org/10.1139/g06-094 PMid:17218960   Rana RM, Dong S, Ali Z, Khan AI, et al. (2012). Identification and characterization of the Bcl-2-associated athanogene (BAG) protein family in rice. Afr. J. Biotechnol. 11: 88-99.   Sato Y and Yokoya S (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 27: 329-334. http://dx.doi.org/10.1007/s00299-007-0470-0 PMid:17968552   Sinha S and Levine B (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148. http://dx.doi.org/10.1038/onc.2009.51 PMid:19641499 PMCid:2731580   Suzuki K, Kirisako T, Kamada Y, Mizushima N, et al. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20: 5971-5981. http://dx.doi.org/10.1093/emboj/20.21.5971 PMid:11689437 PMCid:125692   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673 PMid:7984417 PMCid:308517   Waterhouse AM, Procter JB, Martin DM, Clamp M, et al. (2009). Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. http://dx.doi.org/10.1093/bioinformatics/btp033 PMid:19151095 PMCid:2672624   Wolfe KH, Gouy M, Yang YW, Sharp PM, et al. (1989). Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. U. S. A. 86: 6201-6205. http://dx.doi.org/10.1073/pnas.86.16.6201 PMid:2762323 PMCid:297805   Wu S, Yu Z, Wang F, Li W, et al. (2007). Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.). Mol. Biotechnol. 36: 102-112. http://dx.doi.org/10.1007/s12033-007-0009-1 PMid:17914189   Xia K, Liu T, Ouyang J, Wang R, et al. (2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 18: 363-377. http://dx.doi.org/10.1093/dnares/dsr024 PMid:21795261 PMCid:3190957   Yang Z (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. http://dx.doi.org/10.1093/molbev/msm088 PMid:17483113   Yang Z and Nielsen R (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19: 908-917. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004148 PMid:12032247   Yang Z, Nielsen R, Goldman N and Pedersen AM (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431-449. PMid:10790415 PMCid:1461088
G. - F. Li, Qian, T. - L., Li, G. - S., Yang, C. - X., Qin, M., Huang, J., Sun, M., and Han, Y. - Q., Sodium valproate inhibits MDA-MB-231 breast cancer cell migration by upregulating NM23H1 expression, vol. 11, pp. 77-86, 2012.
Adams LS, Phung S, Yee N, Seeram NP, et al. (2010). Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 70: 3594-3605. http://dx.doi.org/10.1158/0008-5472.CAN-09-3565 PMid:20388778    PMCid:2862148 Baneshi MR, Warner P, Anderson N, Edwards J, et al. (2010). Tamoxifen resistance in early breast cancer: statistical modelling of tissue markers to improve risk prediction. Br. J. Cancer 102: 1503-1510. http://dx.doi.org/10.1038/sj.bjc.6605627 PMid:20461093    PMCid:2869158 Blaheta RA, Nau H, Michaelis M and Cinatl J Jr (2002). Valproate and valproate-analogues: potent tools to fight against cancer. Curr. Med. Chem. 9: 1417-1433. PMid:12173980 Byun SS, Kim FJ, Khandrika L, Kumar B, et al. (2009). Differential effects of valproic acid on growth, proliferation and metastasis in HTB5 and HTB9 bladder cancer cell lines. Cancer Lett. 281: 196-202. http://dx.doi.org/10.1016/j.canlet.2009.02.045 PMid:19324494 Chen PS, Wang CC, Bortner CD, Peng GS, et al. (2007). Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149: 203- 212. http://dx.doi.org/10.1016/j.neuroscience.2007.06.053 PMid:17850978    PMCid:2741413 D’Angelo A, Garzia L, Andre A, Carotenuto P, et al. (2004). Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5: 137-149. http://dx.doi.org/10.1016/S1535-6108(04)00021-2 D’Souza A, Onem E, Patel P, La Gamma EF, et al. (2009). Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res. 1247: 1-10. http://dx.doi.org/10.1016/j.brainres.2008.09.088 PMid:18976638 Dragunow M, Greenwood JM, Cameron RE, Narayan PJ, et al. (2006). Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience 140: 1149-1156. http://dx.doi.org/10.1016/j.neuroscience.2006.02.065 PMid:16600518 Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, et al. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev. 34: 206-222. http://dx.doi.org/10.1016/j.ctrv.2007.11.003 PMid:18226465 Dutertre M, Gratadou L, Dardenne E, Germann S, et al. (2010). Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res. 70: 3760-3770. http://dx.doi.org/10.1158/0008-5472.CAN-09-3988 PMid:20406972 Fortunati N, Bertino S, Costantino L, Bosco O, et al. (2008). Valproic acid is a selective antiproliferative agent in estrogen-sensitive breast cancer cells. Cancer Lett. 259: 156-164. http://dx.doi.org/10.1016/j.canlet.2007.10.006 PMid:18006146 Jawed S, Kim B, Ottenhof T, Brown GM, et al. (2007). Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur. J. Pharmacol. 560: 17-22. http://dx.doi.org/10.1016/j.ejphar.2007.01.022 PMid:17303109 Jin L, Liu G, Zhang CH, Lu CH, et al. (2009). Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: a functional proteomics study. Life Sci. 84: 458-467. http://dx.doi.org/10.1016/j.lfs.2009.01.010 PMid:19302816 Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, et al. (2007). Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp. Hematol. 35: 1527-1537. http://dx.doi.org/10.1016/j.exphem.2007.06.014 PMid:17697742 Leone A, McBride OW, Weston A, Wang MG, et al. (1991). Somatic allelic deletion of nm23 in human cancer. Cancer Res. 51: 2490-2493. PMid:2015608 Liang M, Zhang P and Fu J (2007). Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett. 258: 31-37. http://dx.doi.org/10.1016/j.canlet.2007.08.003 PMid:17868983 Marshall SF, Clarke CA, Deapen D, Henderson K, et al. (2010). Recent breast cancer incidence trends according to hormone therapy use: the California Teachers Study cohort. Breast Cancer Res. 2: R4. http://dx.doi.org/10.1186/bcr2467 PMid:20064209    PMCid:2880422 Platta CS, Greenblatt DY, Kunnimalaiyaan M and Chen H (2008). Valproic acid induces Notch1 signaling in small cell lung cancer cells. J Surg. Res. 148: 31-37. http://dx.doi.org/10.1016/j.jss.2008.03.008 PMid:18570928    PMCid:2900385 Shen WT, Wong TS, Chung WY, Wong MG, et al. (2005). Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 138: 979-984. http://dx.doi.org/10.1016/j.surg.2005.09.019 PMid:16360381 Swain SM, Jeong JH, Geyer CE Jr, Costantino JP, et al. (2010). Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. N. Engl. J. Med. 362: 2053-2065. http://dx.doi.org/10.1056/NEJMoa0909638 PMid:20519679    PMCid:2935316 Wu L, Li Z, Zhang Y, Zhang P, et al. (2008). Adenovirus-expressed human hyperpla- sia suppressor gene induces apoptosis in cancer cells. Mol. Cancer Ther. 7: 222-232. http://dx.doi.org/10.1158/1535-7163.MCT-07-0382 PMid:18202024