Publications

Found 5 results
Filters: Author is V.M. Gomes  [Clear All Filters]
2016
G. C. V. Bard, Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., Gomes, V. M., Bard, G. C. V., Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., and Gomes, V. M., Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS This study forms part of G.C.V. Bard’s DSc degree thesis and was carried out at Universidade Estadual do Norte Fluminense. Research supported by CNPq, FAPERJ, and CAPES through the CAPES/Toxicology project. We wish to thank L.C.D. Souza and V.M. Kokis for technical assistance. REFERENCES Aerts AM, François IE, Meert EM, Li QT, et al (2007). The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13: 243-247. http://dx.doi.org/10.1159/000104753 Benko-Iseppon AM, Galdino SL, Calsa TJrKidoEA, et al (2010). Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci. 11: 181-188. http://dx.doi.org/10.2174/138920310791112075 Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J, et al (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69: 55-59. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04174.x Cameron KD, Teece MA, Smart LB, et al (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. http://dx.doi.org/10.1104/pp.105.069724 Carvalho AO, Teodoro CES, Cunha MD, Okorokova-Façanha AL, et al (2004). Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol. Plant. 122: 328-336. http://dx.doi.org/10.1111/j.1399-3054.2004.00413.x Carvalho AdeO, Gomes VM, et al (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144-1153. http://dx.doi.org/10.1016/j.peptides.2007.03.004 Filho RL, Romero RS, et al (2009). Sensibilidade de Xanthamonas vesicatoria a antibióticos para desenvolvimento de um meio semi-seletivo. Rer. Trop. –. Cienc. Agr. Biol. 3: 28-39. Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, et al (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 142: 233-246. http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x Domínguez E, Heredia-Guerrero JA, Heredia A, et al (2015). Plant cutin genesis: unanswered questions. Trends Plant Sci. 20: 551-558. http://dx.doi.org/10.1016/j.tplants.2015.05.009 Dubreil L, Méliande S, Chiron H, Compoint JP, et al (1998). Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem. 75: 222-229. http://dx.doi.org/10.1094/CCHEM.1998.75.2.222 Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV, et al (2005). Diversity of wheat anti-microbial peptides. Peptides 26: 2064-2073. http://dx.doi.org/10.1016/j.peptides.2005.03.007 Gonçalves LS, Rodrigues R, Diz MS, Robaina RR, et al (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genet. Mol. Res. 12: 1411-1420. http://dx.doi.org/10.4238/2013.April.26.3 Huang MD, Chen TL, Huang AH, et al (2013). Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol. 163: 1218-1229. http://dx.doi.org/10.1104/pp.113.225706 Huang YH, Colgrave ML, Daly NL, Keleshian A, et al (2009). The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284: 20699-20707. http://dx.doi.org/10.1074/jbc.M109.003384 Jensen WA (1962). Botanical histochemistry. In: Principles and practice (Freeman WH & Co, eds.) San Francisco, USA, 1-408. Kader JC, et al (1975). Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44. http://dx.doi.org/10.1016/0005-2760(75)90042-9 Lei L, Chen L, Shi X, Li Y, et al (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 164: 1045-1058. http://dx.doi.org/10.1104/pp.113.232637 Liu F, Zhang X, Lu C, Zeng X, et al (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 66: 5663-5681. http://dx.doi.org/10.1093/jxb/erv313 Maldonado AM, Doerner P, Dixon RA, Lamb CJ, et al (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403. http://dx.doi.org/10.1038/nature00962 Matiello JB (2005). Cultura de café no Brasil, Novo Manual de recomendações. Rio de Janeiro: MAPA/Procafé; Fundação Procafé, Varginha. Mello EO, Ribeiro SF, Carvalho AO, Santos IS, et al (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62: 1209-1217. http://dx.doi.org/10.1007/s00284-010-9847-3 Moulin MM, Rodrigues R, Ribeiro SF, Gonçalves LS, et al (2014). Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 13: 9229-9243. http://dx.doi.org/10.4238/2014.November.7.10 Muñoz A, Marcos JF, Read ND, et al (2012). Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol. 85: 89-106. http://dx.doi.org/10.1111/j.1365-2958.2012.08091.x Pagnussat LA, Lombardo C, Regente M, Pinedo M, et al (2009). Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 166: 797-806. http://dx.doi.org/10.1016/j.jplph.2008.11.005 Regente MC, Giudici AM, Villalaín J, de la Canal L, et al (2005). The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40: 183-189. http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x Ribeiro SF, Silva MS, Da Cunha M, Carvalho AO, et al (2012). Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek 101: 657-670. http://dx.doi.org/10.1007/s10482-011-9683-x Santos IS, Da Cunha M, Machado OLT, Gomes VM, et al (2004). A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 167: 1203-1210. http://dx.doi.org/10.1016/j.plantsci.2004.04.021 Schägger H, von Jagow G, et al (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2 Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7 Tamm L, Thürig B, Fliessbach A, Goltlieb AE, et al (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagening. J. Life Sci. 58: 131-137. http://dx.doi.org/10.1016/j.njas.2011.01.001 Taveira GB, Mathias LS, da Motta OV, Machado OL, et al (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39. http://dx.doi.org/10.1002/bip.22351 Teixeira V, Feio MJ, Bastos M, et al (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177. http://dx.doi.org/10.1016/j.plipres.2011.12.005 Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, et al (1992). In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 100: 1055-1058. http://dx.doi.org/10.1104/pp.100.2.1055 Thevissen K, Terras FR, Broekaert WF, et al (1999). Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. Tian A, Jiang J, Cao J, et al (2013). Functional analysis of a novel male fertility lipid transfer protein gene in Brassica campestris ssp. chinensis. Plant Mol. Biol. Report. 31: 775-782. http://dx.doi.org/10.1007/s11105-012-0552-1 Tsuboi S, Osafune T, Tsugeki R, Nishimura M, et al (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500-508. Wang SY, Wu JH, Ng TB, Ye XY, et al (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810: 375-383. http://dx.doi.org/10.1016/j.bbagen.2010.12.002 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2013). An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim. Biophys. Acta 1830: 3509-3516. http://dx.doi.org/10.1016/j.bbagen.2013.03.007 Zottich UP (2012). Peptídeos de sementes de Coffea canephora: purificação e caracterização das atividades antimicrobianas e inseticidas. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes.
G. C. V. Bard, Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., Gomes, V. M., Bard, G. C. V., Zottich, U., Souza, T. A. M., Ribeiro, S. F. F., Dias, G. B., Pireda, S., Da Cunha, M., Rodrigues, R., Pereira, L. S., Machado, O. L. T., Carvalho, A. O., and Gomes, V. M., Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS This study forms part of G.C.V. Bard’s DSc degree thesis and was carried out at Universidade Estadual do Norte Fluminense. Research supported by CNPq, FAPERJ, and CAPES through the CAPES/Toxicology project. We wish to thank L.C.D. Souza and V.M. Kokis for technical assistance. REFERENCES Aerts AM, François IE, Meert EM, Li QT, et al (2007). The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13: 243-247. http://dx.doi.org/10.1159/000104753 Benko-Iseppon AM, Galdino SL, Calsa TJrKidoEA, et al (2010). Overview on plant antimicrobial peptides. Curr. Protein Pept. Sci. 11: 181-188. http://dx.doi.org/10.2174/138920310791112075 Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J, et al (1990). An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69: 55-59. http://dx.doi.org/10.1111/j.1574-6968.1990.tb04174.x Cameron KD, Teece MA, Smart LB, et al (2006). Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140: 176-183. http://dx.doi.org/10.1104/pp.105.069724 Carvalho AO, Teodoro CES, Cunha MD, Okorokova-Façanha AL, et al (2004). Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds. Physiol. Plant. 122: 328-336. http://dx.doi.org/10.1111/j.1399-3054.2004.00413.x Carvalho AdeO, Gomes VM, et al (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144-1153. http://dx.doi.org/10.1016/j.peptides.2007.03.004 Filho RL, Romero RS, et al (2009). Sensibilidade de Xanthamonas vesicatoria a antibióticos para desenvolvimento de um meio semi-seletivo. Rer. Trop. –. Cienc. Agr. Biol. 3: 28-39. Diz MS, Carvalho AO, Ribeiro SF, Da Cunha M, et al (2011). Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 142: 233-246. http://dx.doi.org/10.1111/j.1399-3054.2011.01464.x Domínguez E, Heredia-Guerrero JA, Heredia A, et al (2015). Plant cutin genesis: unanswered questions. Trends Plant Sci. 20: 551-558. http://dx.doi.org/10.1016/j.tplants.2015.05.009 Dubreil L, Méliande S, Chiron H, Compoint JP, et al (1998). Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem. 75: 222-229. http://dx.doi.org/10.1094/CCHEM.1998.75.2.222 Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV, et al (2005). Diversity of wheat anti-microbial peptides. Peptides 26: 2064-2073. http://dx.doi.org/10.1016/j.peptides.2005.03.007 Gonçalves LS, Rodrigues R, Diz MS, Robaina RR, et al (2013). Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum. Genet. Mol. Res. 12: 1411-1420. http://dx.doi.org/10.4238/2013.April.26.3 Huang MD, Chen TL, Huang AH, et al (2013). Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol. 163: 1218-1229. http://dx.doi.org/10.1104/pp.113.225706 Huang YH, Colgrave ML, Daly NL, Keleshian A, et al (2009). The biological activity of the prototypic cyclotide kalata b1 is modulated by the formation of multimeric pores. J. Biol. Chem. 284: 20699-20707. http://dx.doi.org/10.1074/jbc.M109.003384 Jensen WA (1962). Botanical histochemistry. In: Principles and practice (Freeman WH & Co, eds.) San Francisco, USA, 1-408. Kader JC, et al (1975). Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44. http://dx.doi.org/10.1016/0005-2760(75)90042-9 Lei L, Chen L, Shi X, Li Y, et al (2014). A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. Plant Physiol. 164: 1045-1058. http://dx.doi.org/10.1104/pp.113.232637 Liu F, Zhang X, Lu C, Zeng X, et al (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 66: 5663-5681. http://dx.doi.org/10.1093/jxb/erv313 Maldonado AM, Doerner P, Dixon RA, Lamb CJ, et al (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399-403. http://dx.doi.org/10.1038/nature00962 Matiello JB (2005). Cultura de café no Brasil, Novo Manual de recomendações. Rio de Janeiro: MAPA/Procafé; Fundação Procafé, Varginha. Mello EO, Ribeiro SF, Carvalho AO, Santos IS, et al (2011). Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol. 62: 1209-1217. http://dx.doi.org/10.1007/s00284-010-9847-3 Moulin MM, Rodrigues R, Ribeiro SF, Gonçalves LS, et al (2014). Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 13: 9229-9243. http://dx.doi.org/10.4238/2014.November.7.10 Muñoz A, Marcos JF, Read ND, et al (2012). Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol. Microbiol. 85: 89-106. http://dx.doi.org/10.1111/j.1365-2958.2012.08091.x Pagnussat LA, Lombardo C, Regente M, Pinedo M, et al (2009). Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 166: 797-806. http://dx.doi.org/10.1016/j.jplph.2008.11.005 Regente MC, Giudici AM, Villalaín J, de la Canal L, et al (2005). The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40: 183-189. http://dx.doi.org/10.1111/j.1472-765X.2004.01647.x Ribeiro SF, Silva MS, Da Cunha M, Carvalho AO, et al (2012). Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek 101: 657-670. http://dx.doi.org/10.1007/s10482-011-9683-x Santos IS, Da Cunha M, Machado OLT, Gomes VM, et al (2004). A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 167: 1203-1210. http://dx.doi.org/10.1016/j.plantsci.2004.04.021 Schägger H, von Jagow G, et al (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2 Smith PK, Krohn RI, Hermanson GT, Mallia AK, et al (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7 Tamm L, Thürig B, Fliessbach A, Goltlieb AE, et al (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagening. J. Life Sci. 58: 131-137. http://dx.doi.org/10.1016/j.njas.2011.01.001 Taveira GB, Mathias LS, da Motta OV, Machado OL, et al (2014). Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39. http://dx.doi.org/10.1002/bip.22351 Teixeira V, Feio MJ, Bastos M, et al (2012). Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 51: 149-177. http://dx.doi.org/10.1016/j.plipres.2011.12.005 Terras FRG, Goderis IJ, Van Leuven F, Vanderleyden J, et al (1992). In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol. 100: 1055-1058. http://dx.doi.org/10.1104/pp.100.2.1055 Thevissen K, Terras FR, Broekaert WF, et al (1999). Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. Tian A, Jiang J, Cao J, et al (2013). Functional analysis of a novel male fertility lipid transfer protein gene in Brassica campestris ssp. chinensis. Plant Mol. Biol. Report. 31: 775-782. http://dx.doi.org/10.1007/s11105-012-0552-1 Tsuboi S, Osafune T, Tsugeki R, Nishimura M, et al (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. 111: 500-508. Wang SY, Wu JH, Ng TB, Ye XY, et al (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2011). Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810: 375-383. http://dx.doi.org/10.1016/j.bbagen.2010.12.002 Zottich U, Da Cunha M, Carvalho AO, Dias GB, et al (2013). An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim. Biophys. Acta 1830: 3509-3516. http://dx.doi.org/10.1016/j.bbagen.2013.03.007 Zottich UP (2012). Peptídeos de sementes de Coffea canephora: purificação e caracterização das atividades antimicrobianas e inseticidas. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes.
2013
G. B. Dias, Gomes, V. M., Moraes, T. M. S., Zottich, U. P., Rabelo, G. R., Carvalho, A. O., Moulin, M., Gonçalves, L. S. A., Rodrigues, R., and Da Cunha, M., Characterization of Capsicum species using anatomical and molecular data, vol. 12, pp. 6488-6501, 2013.
L. S. A. Gonçalves, Rodrigues, R., Diz, M. S. S., Robaina, R. R., Júnior, A. Tdo Amaral, Carvalho, A. O., and Gomes, V. M., Peroxidase is involved in Pepper yellow mosaic virus resistance in Capsicum baccatum var. pendulum, vol. 12, pp. 1411-1420, 2013.
Benitez-Alfonso Y, Faulkner C, Ritzenthaler C and Maule AJ (2010). Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant Microbe Interact. 23: 1403-1412. http://dx.doi.org/10.1094/MPMI-05-10-0116 PMid:20687788   Bento CS, Rodrigues R, Zerbini-Júnior FM and Sudré CP (2009). Sources of resistance against the Pepper yellow mosaic virus in chili pepper. Hortic. Bras. 27: 196-201. http://dx.doi.org/10.1590/S0102-05362009000200013   Boevink P and Oparka KJ (2005). Virus-host interactions during movement processes. Plant Physiol. 138: 1815-1821. http://dx.doi.org/10.1104/pp.105.066761 PMid:16172094 PMCid:1183373   Boiteux LS and Pessoa HBSV (1994). Additional sources of resistance to an isolates of PVYm in Capsicum germoplasm. Fitopatol. Bras. 19: 291.   Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Cammue BP, Thevissen K, Hendriks M, Eggermont K, et al. (1995). A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 109: 445-455. http://dx.doi.org/10.1104/pp.109.2.445 PMid:7480341 PMCid:157606   Carmo MGF, Zerbini-Júnior FM and Maffia LA (2006). Principais doenças da cultura da pimenta. Informe Agropec. 27: 87-98.   Caruso C, Chilosi G, Caporale C, Leonardi L, et al. (1999). Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 140: 87-97. http://dx.doi.org/10.1016/S0168-9452(98)00199-X   Clarke SF, Guy PL, Burritt DJ and Jameson PE (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol. Plant 114: 157-164. http://dx.doi.org/10.1034/j.1399-3054.2002.1140201.x PMid:11903962   Diz MSS (2007). Isolamento e Caracterização de uma Proteína Transportadora de Lípideo (LTP) de Pimenta. Master's thesis, UENF, Campos dos Goytacazes.   El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, et al. (2001). Characterization of a chitinase and an endo-β-1,3- glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl. Microbiol. Biotechnol. 56: 137-143. http://dx.doi.org/10.1007/s002530100646 PMid:11499921   Elvira MI, Galdeano MM, Gilardi P, Garcia-Luque I, et al. (2008). Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of Pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J. Exp. Bot. 59: 1253-1265. http://dx.doi.org/10.1093/jxb/ern032 PMid:18375936   Fink W, Liefland M and Mendgen K (1988). Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.). Plant Physiol. 88: 270-275. http://dx.doi.org/10.1104/pp.88.2.270 PMid:16666294 PMCid:1055567   Gorovits R, Akad F, Beery H, Vidavsky F, et al. (2007). Expression of stress-response proteins upon whitefly-mediated inoculation of Tomato yellow leaf curl virus in susceptible and resistant tomato plants. Mol. Plant Microbe Interact. 20: 1376-1383. http://dx.doi.org/10.1094/MPMI-20-11-1376 PMid:17977149   Granier F (1988). Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis 9: 712-718. http://dx.doi.org/10.1002/elps.1150091106 PMid:3074923   Hammond-Kosack KE and Jones JD (1997). Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575-607. http://dx.doi.org/10.1146/annurev.arplant.48.1.575 PMid:15012275   Hiraga S, Sasaki K, Ito H, Ohashi Y, et al. (2001). A large family of class III plant peroxidases. Plant Cell Physiol. 42: 462-468. http://dx.doi.org/10.1093/pcp/pce061 PMid:11382811   Houterman PM, Speijer D, Dekker HL, DE Koster CG, et al. (2007). The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol. Plant Pathol. 8: 215-221. http://dx.doi.org/10.1111/j.1364-3703.2007.00384.x PMid:20507493   Jones JD and Dangl JL (2006). The plant immune system. Nature 444: 323-329. http://dx.doi.org/10.1038/nature05286 PMid:17108957   Kawano T (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829-837. PMid:12789499   Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. http://dx.doi.org/10.1038/227680a0 PMid:5432063   Lagrimini LM and Rothstein S (1987). Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol. 84: 438-442. http://dx.doi.org/10.1104/pp.84.2.438 PMid:16665458 PMCid:1056598   Leon JC, Alpeeva IS, Chubar TA, Galaev IY, et al. (2002). Purification and substrate specificity of peroxidase from sweet potato tubers. Plant Sci. 163: 1011-1019. http://dx.doi.org/10.1016/S0168-9452(02)00275-3   Maciel-Zambolim E, Costa H, Capucho AS, Ávila AC, et al. (2004). Surto epidemiológico do vírus do mosaico amarelo do pimentão em tomateiro na região serrana do Espírito Santo. Fitopatol. Bras. 29: 325-327. http://dx.doi.org/10.1590/S0100-41582004000300017   Nascimento IR, Costa do Vale LA, Maluf WR, Gonçalves LD, et al. (2007). Reação de híbridos, linhagens e progênies de pimentão a requeima causada por Phytophthora capsici e ao mosaico amarelo causado por Pepper yellow mosaic virus (PepYMV). Ciênc. Agrotec. 31: 121-128. http://dx.doi.org/10.1590/S1413-70542007000100018   O'Brien M and Colwell RR (1987). A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide. Appl. Environ. Microbiol. 53: 1718-1720. PMid:3662513 PMCid:203942   Park CJ, Shin R, Park JM, Lee GJ, et al. (2002). Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48: 243-254. http://dx.doi.org/10.1023/A:1013383329361 PMid:11855726   Passardi F, Penel C and Dunand C (2004). Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9: 534-540. http://dx.doi.org/10.1016/j.tplants.2004.09.002 PMid:15501178   Pereira LF, Goodwin PH and Erickson L (2000). Peroxidase activity during susceptible and resistant interactions between cassava (Manihot esculenta) and Xanthomonas axonopodis pv. manihotis and Xanthomonas cassavae. J. Phytopathol. 148: 575-578. http://dx.doi.org/10.1046/j.1439-0434.2000.00548.x   Quiroga M, Guerrero C, Botella MA, Barceló A, et al. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 122: 1119-1127. http://dx.doi.org/10.1104/pp.122.4.1119 PMid:10759507 PMCid:58946   Radwan DEM, Fayez KA, Mahmoud SY, Hamad A, et al. (2006). Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiol. Mol. Plant Pathol. 69: 172-181. http://dx.doi.org/10.1016/j.pmpp.2007.04.004   Radwan DE, Fayez KA, Mahmoud SY, Hamad A, et al. (2007). Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol. Biochem. 45: 480-489. http://dx.doi.org/10.1016/j.plaphy.2007.03.002 PMid:17466528   Schägger H and von Jagow G (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. http://dx.doi.org/10.1016/0003-2697(87)90587-2   Shimoni M (1994). A method for activity staining of peroxidase and β-1,3-glucanase isozymes in polyacrylamide electrophoresis gels. Anal. Biochem. 220: 36-38. http://dx.doi.org/10.1006/abio.1994.1295 PMid:7978253   Tecsi LI, Smith AM, Maule AJ and Leegood RC (1996). A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with Cucumber mosaic virus. Plant Physiol. 111: 975-985. PMid:12226342 PMCid:160966   Towbin H, Staehelin T and Gordon J (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 76: 4350-4354. http://dx.doi.org/10.1073/pnas.76.9.4350 PMid:388439 PMCid:411572   Truta AAC, Souza ARR, Nascimento AVS, Pereira RC, et al. (2004). Identidade e propriedades de isolados de potyvírus provenientes de Capsicum spp. Fitopatol. Bras. 29: 160-168. http://dx.doi.org/10.1590/S0100-41582004000200007   Van Loon LC and Van Strien EA (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97. http://dx.doi.org/10.1006/pmpp.1999.0213   Van Loon LC, Rep M and Pieterse CM (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44: 135-162. http://dx.doi.org/10.1146/annurev.phyto.44.070505.143425 PMid:16602946   Vieira FA, Carvalho AO, Vitória AP, Retamal CA, et al. (2010). Differential expression of defence-related proteins in Vigna unguiculata (L. Walp.) seedlings after infection with Fusarium oxysporum. Crop Protect. 29: 440-447. http://dx.doi.org/10.1016/j.cropro.2009.10.010   Wang SY, Wu JH, Ng TB, Ye XY, et al. (2004). A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 25: 1235-1242. http://dx.doi.org/10.1016/j.peptides.2004.06.004 PMid:15350690   Ye XS, Pan SQ and Kué J (1990). Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus. Phytopathology 80: 1295- 1299. http://dx.doi.org/10.1094/Phyto-80-1295