Publications

Found 13 results
Filters: Author is B. Hu  [Clear All Filters]
2013
Y. B. Wu, Zang, W. D., Yao, W. Z., Luo, Y., Hu, B., Wang, L., and Liang, Y. L., Analysis of FOS, BTG2, and NR4A in the function of renal medullary hypertension, vol. 12, pp. 3735-3741, 2013.
S. L. Yang, Mu, Y. M., Tang, K. Q., Jiang, X. K., Bai, W. K., Shen, E., and Hu, B., Enhancement of recombinant adeno-associated virus mediated transgene expression by targeted echo-contrast agent, vol. 12, pp. 1318-1326, 2013.
Aoi A, Watanabe Y, Mori S, Takahashi M, et al. (2008). Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound Med. Biol. 34: 425-434. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.004 PMid:18096302   Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW, et al. (2012). Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J. Control Release 157: 235-242. http://dx.doi.org/10.1016/j.jconrel.2011.09.086 PMid:21982902   Bekeredjian R and Shohet RV (2004). Cardiovascular gene therapy: angiogenesis and beyond. Am. J. Med. Sci. 327: 139-148. http://dx.doi.org/10.1097/00000441-200403000-00005 PMid:15090752   Bekeredjian R, Chen S, Grayburn PA and Shohet RV (2005). Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med. Biol. 31: 687-691. http://dx.doi.org/10.1016/j.ultrasmedbio.2004.08.002 PMid:15866418   Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, et al. (2007). Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology 69: 386-389. http://dx.doi.org/10.1016/j.urology.2006.12.004 PMid:17320694   Boussif O, Gaucheron J, Boulanger C, Santaella C, et al. (2001). Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J. Gene Med. 3: 109-114. http://dx.doi.org/10.1002/jgm.166 PMid:11318109   Chu D, Sullivan CC, Weitzman MD, Du L, et al. (2003). Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J. Thorac. Cardiovasc. Surg. 126: 671-679. http://dx.doi.org/10.1016/S0022-5223(03)00082-5   Coura RS and Nardi NB (2007). The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J. 4: 99. http://dx.doi.org/10.1186/1743-422X-4-99 PMid:17939872 PMCid:2104528   Delalande A, Bureau MF, Midoux P, Bouakaz A, et al. (2010). Ultrasound-assisted microbubbles gene transfer in tendons for gene therapy. Ultrasonics 50: 269-272. http://dx.doi.org/10.1016/j.ultras.2009.09.035 PMid:19857885   Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, et al. (2004). Microbubbles and ultrasound: from diagnosis to therapy. Eur. J. Echocardiogr. 5: 245-256. http://dx.doi.org/10.1016/j.euje.2004.02.001 PMid:15219539   Edelstein ML, Abedi MR, Wixon J and Edelstein RM (2004). Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med. 6: 597-602. http://dx.doi.org/10.1002/jgm.619 PMid:15170730   Geis NA, Mayer CR, Kroll RD, Hardt SE, et al. (2009). Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability. Ultrasound Med. Biol. 35: 1119-1126. http://dx.doi.org/10.1016/j.ultrasmedbio.2009.01.008 PMid:19427103   Harriss DJ and Atkinson G (2011). Update - Ethical standards in sport and exercise science research. Int. J. Sports Med. 32: 819-821. http://dx.doi.org/10.1055/s-0031-1287829 PMid:22065312   Hiyama A, Mochida J, Iwashina T, Omi H, et al. (2007). Synergistic effect of low-intensity pulsed ultrasound on growth factor stimulation of nucleus pulposus cells. J. Orthop. Res. 25: 1574-1581. http://dx.doi.org/10.1002/jor.20460 PMid:17593536   Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, et al. (2008). Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med. Biol. 34: 502-508. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.010 PMid:17993242   Kawada T, Nakazawa M, Nakauchi S, Yamazaki K, et al. (2002). Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters. Proc. Natl. Acad. Sci. U. S. A. 99: 901-906. http://dx.doi.org/10.1073/pnas.022641799 PMid:11805334 PMCid:117403   Lee M, Rentz J, Bikram M, Han S, et al. (2003). Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 10: 1535-1542. http://dx.doi.org/10.1038/sj.gt.3302034 PMid:12907944   Li X, Wang Z, Ran H, Li X, et al. (2008). Experimental research on therapeutic angiogenesis induced by hepatocyte growth factor directed by ultrasound-targeted microbubble destruction in rats. J. Ultrasound Med. 27: 453-460. PMid:18314523   Melo LG, Agrawal R, Zhang L, Rezvani M, et al. (2002). Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105: 602-607. http://dx.doi.org/10.1161/hc0502.103363 PMid:11827926   Miura S, Tachibana K, Okamoto T and Saku K (2002). In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem. Biophys. Res. Commun. 298: 587-590. http://dx.doi.org/10.1016/S0006-291X(02)02467-1   Müller OJ, Katus HA and Bekeredjian R (2007). Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc. Res. 73: 453-462. http://dx.doi.org/10.1016/j.cardiores.2006.09.021 PMid:17097076   Müller OJ, Schinkel S, Kleinschmidt JA, Katus HA, et al. (2008). Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther. 15: 1558-1565. http://dx.doi.org/10.1038/gt.2008.111 PMid:18615116   Raake PW, Hinkel R, Muller S, Delker S, et al. (2008). Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther. 15: 12-17. http://dx.doi.org/10.1038/sj.gt.3303035 PMid:17943147   Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, et al. (2004). Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 109: 1029-1035. http://dx.doi.org/10.1161/01.CIR.0000115519.03688.A2 PMid:14967735   Storek B, Harder NM, Banck MS, Wang C, et al. (2006). Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol. Pain 2: 4. http://dx.doi.org/10.1186/1744-8069-2-4 PMid:16445862 PMCid:1373607   Su H, Joho S, Huang Y, Barcena A, et al. (2004). Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc. Natl. Acad. Sci. U. S. A. 101: 16280-16285. http://dx.doi.org/10.1073/pnas.0407449101 PMid:15534198 PMCid:527136   Surace EM and Auricchio A (2008). Versatility of AAV vectors for retinal gene transfer. Vision Res. 48: 353-359. http://dx.doi.org/10.1016/j.visres.2007.07.027 PMid:17923143   Suzuki R, Takizawa T, Negishi Y, Utoguchi N, et al. (2008). Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int. J. Pharm. 354: 49-55. http://dx.doi.org/10.1016/j.ijpharm.2007.10.034 PMid:18082343   Taylor SL, Rahim AA, Bush NL, Bamber JC, et al. (2007). Targeted retroviral gene delivery using ultrasound. J. Gene Med. 9: 77-87. http://dx.doi.org/10.1002/jgm.1003 PMid:17310476   Tokunaga N, Nagaya N, Shirai M, Tanaka E, et al. (2004). Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin. Circulation 109: 526- 531. http://dx.doi.org/10.1161/01.CIR.0000109700.81266.32 PMid:14732745   Unger EC, Hersh E, Vannan M, Matsunaga TO, et al. (2001). Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44: 45-54. http://dx.doi.org/10.1053/pcad.2001.26443 PMid:11533926   Vassalli G, Bueler H, Dudler J, von Segesser LK, et al. (2003). Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int. J. Cardiol. 90: 229-238. http://dx.doi.org/10.1016/S0167-5273(02)00554-5   Wang JF, Wang JB, Chen H, Zhang CM, et al. (2008). Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Adv. Ther. 25: 412-421. http://dx.doi.org/10.1007/s12325-008-0051-9 PMid:18463802   Wright MJ, Wightman LM, Lilley C, de Alwis M, et al. (2001). In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res. Cardiol. 96: 227-236. http://dx.doi.org/10.1007/s003950170053 PMid:11403416   Wu XB, Dong XY and Wu ZJ (2000). A novel technique for adeno-associated virus purification. Chin. Sci. Bull. 45: 2071-2075.   Xu HX, Liu GJ, Lu MD, Xie XY, et al. (2006). Characterization of small focal liver lesions using real-time contrast-enhanced sonography: diagnostic performance analysis in 200 patients. J. Ultrasound Med. 25: 349-361. PMid:16495496
B. Zhang, Zhou, H. S., Cheng, Q., Lei, L., and Hu, B., Overexpression of HSP27 in cultured human aortic smooth muscular cells reduces apoptosis induced by low-frequency and low-energy ultrasound by inhibition of an intrinsic pathway, vol. 12, pp. 6588-6601, 2013.
P. Hu, Hu, B., Qin, Y. H., Lu, L., Li, Z. Q., Tao, L. Q., Pei, Q., and Chen, J., Serum lipid abnormalities are not associated with apoB 3' VNTR polymorphism in nephrotic children, vol. 12, pp. 765-774, 2013.
Bairaktari E, Hatzidimou K, Tzallas C, Vini M, et al. (2000). Estimation of LDL cholesterol based on the Friedewald formula and on apo B levels. Clin. Biochem. 33: 549-555. http://dx.doi.org/10.1016/S0009-9120(00)00162-4   Batanian JR, Ledbetter DH and Fenwick RG (1998). A simple VNTR-PCR method for detecting maternal cell contamination in prenatal diagnosis. Genet. Test. 2: 347-350. http://dx.doi.org/10.1089/gte.1998.2.347 PMid:10464615   Boerwinkle E, Xiong WJ, Fourest E and Chan L (1989). Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3' hypervariable region. Proc. Natl. Acad. Sci. U. S. A. 86: 212-216. http://dx.doi.org/10.1073/pnas.86.1.212 PMid:2911570 PMCid:286434   Choong ML, Koay ES, Khaw MC and Aw TC (1999). Apolipoprotein B 5'-Ins/Del and 3'-VNTR polymorphisms in Chinese, malay and Indian singaporeans. Hum. Hered. 49: 31-40. http://dx.doi.org/10.1159/000022837 PMid:9858855   Cohen SL, Cramp DG, Lewis AD and Tickner TR (1980). The mechanism of hyperlipidaemia in nephrotic syndrome--role of low albumin and the LCAT reaction. Clin. Chim. Acta 104: 393-400. http://dx.doi.org/10.1016/0009-8981(80)90398-8   Deka R, Chakraborty R, DeCroo S, Rothhammer F, et al. (1992). Characteristics of polymorphism at a VNTR locus 3' to the apolipoprotein B gene in five human populations. Am. J. Hum. Genet. 51: 1325-1333. PMid:1463014 PMCid:1682919   Destro-Bisol G, Presciuttini S, d'Aloja E, Dobosz M, et al. (1994). Genetic variation at the ApoB 3'HVR, D2S44, and D7S21 loci in the Ewondo Ethnic Group of Cameroon. Am. J. Hum. Genet. 55: 168-174. PMid:7912886 PMCid:1918238   Dixit M, Srivastava A, Choudhuri G and Mittal B (2008). Higher alleles of apolipoprotein B Gene 3' VNTR: risk for gallstone disease. Ind. J. Clin. Biochem. 23: 123-129. http://dx.doi.org/10.1007/s12291-008-0029-z PMid:23105737 PMCid:3453088   Dixit VM and Hettiaratchi ES (1979). The mechanism of hyperlipidaemia in the nephrotic syndrome. Med. Hypotheses 5: 1327-1331. http://dx.doi.org/10.1016/0306-9877(79)90102-6   Friedl W, Ludwig EH, Paulweber B, Sandhofer F, et al. (1990). Hypervariability in a minisatellite 3' of the apolipoprotein B gene in patients with coronary heart disease compared with normal controls. J. Lipid Res. 31: 659-665. PMid:2351870   Gipson DS, Massengill SF, Yao L, Nagaraj S, et al. (2009). Management of childhood onset nephrotic syndrome. Pediatrics 124: 747-757. http://dx.doi.org/10.1542/peds.2008-1559 PMid:19651590   Gong WK, Cheung W and Yap HK (2000). Minimal change nephrotic syndrome - a complex genetic disorder. Ann. Acad. Med. Singapore 29: 351-356. PMid:10976389   Gordillo R and Spitzer A (2009). The nephrotic syndrome. Pediatr. Rev. 30: 94-104. http://dx.doi.org/10.1542/pir.30-3-94 PMid:19255123   Hansen PS, Gerdes LU, Klausen IC, Gregersen N, et al. (1993). Polymorphisms in the apolipoprotein B-100 gene contributes to normal variation in plasma lipids in 464 Danish men born in 1948. Hum. Genet. 91: 45-50. http://dx.doi.org/10.1007/BF00230221 PMid:8095917   Hokken-Koelega AC, Hackeng WH, Stijnen T, Wit JM, et al. (1990). Twenty-four-hour plasma growth hormone (GH) profiles, urinary GH excretion, and plasma insulin-like growth factor-I and -II levels in prepubertal children with chronic renal insufficiency and severe growth retardation. J. Clin. Endocrinol. Metab 71: 688-695. http://dx.doi.org/10.1210/jcem-71-3-688 PMid:2394775   Hu P, Lu L, Hu B and Du PF (2009a). Characteristics of lipid metabolism under different urinary protein excretion in children with primary nephrotic syndrome. Scand. J. Clin. Lab. Invest. 69: 680-686. http://dx.doi.org/10.3109/00365510902980751 PMid:19468931   Hu P, Qin YH, Jing CX, Lei FY, et al. (2009b). Association of polymorphisms at restriction enzyme recognition sites of apolipoprotein B and E gene with dyslipidemia in children undergoing primary nephrotic syndrome. Mol. Biol. Rep. 36: 1015-1021. http://dx.doi.org/10.1007/s11033-008-9275-7 PMid:18512131   Hu P, Qin YH, Jing CX, Lu L, et al. (2009c). Effect of apolipoprotein B polymorphism on body mass index, serum protein and lipid profiles in children of Guangxi, China. Ann. Hum. Biol. 36: 411-420. http://dx.doi.org/10.1080/03014460902882475 PMid:19449275   Hu P, Qin YH, Hu B and Lu L (2010). Hypervariability in a minisatellite 3' of the apolipoprotein B gene: allelic distribution and influence on lipid profiles in Han Children from central China. Clin. Chim. Acta 411: 2092-2096. http://dx.doi.org/10.1016/j.cca.2010.09.010 PMid:20837003   Hu P, Wang J, Hu B, Lu L, et al. (2012). Dyslipidemia acts as a close link between cardiovascular risk and renal progression in nephrotic children. Asian Biomed. 6: 151-157.   Huang LS and Breslow JL (1987). A unique AT-rich hypervariable minisatellite 3' to the ApoB gene defines a high information restriction fragment length polymorphism. J. Biol. Chem. 262: 8952-8955. PMid:2885324   Khrunin A, Verbenko D, Nikitina K and Limborska S (2007). Regional differences in the genetic variability of Finno- Ugric speaking Komi populations. Am. J. Hum. Biol. 19: 741-750. http://dx.doi.org/10.1002/ajhb.20620 PMid:17691096   Lechner BL, Bockenhauer D, Iragorri S, Kennedy TL, et al. (2004). The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome. Pediatr. Nephrol. 19: 744-748. http://dx.doi.org/10.1007/s00467-004-1460-x PMid:15085419   Mitsnefes MM (2008). Cardiovascular complications of pediatric chronic kidney disease. Pediatr. Nephrol. 23: 27-39. http://dx.doi.org/10.1007/s00467-006-0359-0 PMid:17120060 PMCid:2100430   Noguera NI, Tallano CE, Bragos IM and Milani AC (2000). Modified salting-out method for DNA isolation from newborn cord blood nucleated cells. J. Clin. Lab. Anal. 14: 280-283. http://dx.doi.org/10.1002/1098-2825(20001212)14:6<280::AID-JCLA6>3.0.CO;2-0   Pan JP, Chiang AN, Chou CY, Chan WL, et al. (1998). Polymorphisms of the apolipoprotein B 3' variable number of tandem repeats region associated with coronary artery disease in Taiwanese. J. Formos. Med. Assoc. 97: 233-238. PMid:9585673   Pontrelli L, Sidiropoulos KG and Adeli K (2004). Translational control of apolipoprotein B mRNA: regulation via cis elements in the 5' and 3' untranslated regions. Biochemistry 43: 6734-6744. http://dx.doi.org/10.1021/bi049887s PMid:15157107   Rantala M, Rantala TT, Savolainen MJ, Friedlander Y, et al. (2000). Apolipoprotein B gene polymorphisms and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. Am. J. Clin. Nutr. 71: 713-724. PMid:10702164   Rebhi L, Omezzine A, Kchok K, Belkahla R, et al. (2008). 5' ins/del and 3' VNTR polymorphisms in the apolipoprotein B gene in relation to lipids and coronary artery disease. Clin. Chem. Lab. Med. 46: 329-334. http://dx.doi.org/10.1515/CCLM.2008.067 PMid:18254714   Ruf RG, Wolf MT, Hennies HC, Lucke B, et al. (2003). A gene locus for steroid-resistant nephrotic syndrome with deafness maps to chromosome 14q24.2. J. Am. Soc. Nephrol. 14: 1519-1522. http://dx.doi.org/10.1097/01.ASN.0000066141.55735.8D PMid:12761252   Ruixing Y, Guangqin C, Yong W, Weixiong L, et al. (2007). Effect of the 3'APOB-VNTR polymorphism on the lipid profiles in the Guangxi Hei Yi Zhuang and Han populations. BMC Med. Genet. 8: 45. http://dx.doi.org/10.1186/1471-2350-8-45 PMid:17640344 PMCid:1939985   Sajantila A, Lukka M and Syvanen AC (1999). Experimentally observed germline mutations at human micro- and minisatellite loci. Eur. J. Hum. Genet. 7: 263-266. http://dx.doi.org/10.1038/sj.ejhg.5200257 PMid:10196715   Segrest JP, Jones MK, De Loof H and Dashti N (2001). Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42: 1346-1367. PMid:11518754   Soares-Vieira JA, Billerbeck AE, Iwamura ES, Cardoso L, et al. (2000). Post-mortem forensic identity testing: application of PCR to the identification of fire victim. Sao Paulo Med. J. 118: 75-77. http://dx.doi.org/10.1590/S1516-31802000000300005 PMid:10810332   Tovar AR, Murguia F, Cruz C, Hernandez-Pando R, et al. (2002). A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J. Nutr. 132: 2562-2569. PMid:12221209   Verbenko DA, Pogoda TV, Spitsyn VA, Mikulich AI, et al. (2003). Apolipoprotein B 3'-VNTR polymorphism in Eastern European populations. Eur. J. Hum. Genet. 11: 444-451. http://dx.doi.org/10.1038/sj.ejhg.5200986 PMid:12774037   Wiecek A, Kokot F, Strzelczyk P, Witkowicz J, et al. (1993). Relationship between renal biopsy histopathology and profile of changes in serum protein, lipids and proteinuria in patients with nephrotic syndrome due to chronic glomerulonephritis. Pol. Arch. Med. Wewn. 90: 426-432. PMid:8146046   Yasuda N and Kimura M (1968). A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Ann. Hum. Genet. 31: 409-420. http://dx.doi.org/10.1111/j.1469-1809.1968.tb00574.x PMid:5673164
2012
Q. Qiu, Hu, B., Chen, Z. C., and He, X. S., Sexual dimorphism of STGC3 tumor suppressor function in nasopharyngeal carcinoma CNE2 cells, vol. 11, pp. 4585-4597, 2012.
Abdel Khalek Abdel RA and King A (2012). MRI and CT of nasopharyngeal carcinoma. AJR Am. J. Roentgenol. 198: 11-18. http://dx.doi.org/10.2214/AJR.11.6954 PMid:22194474   Chae JI, Kim J, Woo SM, Han HW, et al. (2009). Cytoskeleton-associated proteins are enriched in human embryonic-stem cell-derived neuroectodermal spheres. Proteomics 9: 1128-1141. http://dx.doi.org/10.1002/pmic.200800234 PMid:19206105   Chong VF and Ong CK (2008). Nasopharyngeal carcinoma. Eur. J. Radiol. 66: 437-447. http://dx.doi.org/10.1016/j.ejrad.2008.03.029 PMid:18485650   Diehl JA, Yang W, Rimerman RA, Xiao H, et al. (2003). Hsc70 regulates accumulation of cyclin D1 and cyclin D1- dependent protein kinase. Mol. Cell Biol. 23: 1764-1774. http://dx.doi.org/10.1128/MCB.23.5.1764-1774.2003 PMid:12588994 PMCid:151693   Garbuz DG, Astakhova LN, Zatsepina OG, Arkhipova IR, et al. (2011). Functional organization of hsp70 cluster in camel (Camelus dromedarius) and other mammals. PLoS One 6: e27205. http://dx.doi.org/10.1371/journal.pone.0027205 PMid:22096537 PMCid:3212538   He XS, Xiao ZQ, Chen ZC, Zhao SP, et al. (2004). Molecular cloning and functional analysis of STGC3 - a novel gene on chromosome 3p21. Ai Zheng 23: 1110-1115. PMid:15473918   He XS, Deng M, Yang S, Xiao ZQ, et al. (2008). The tumor supressor function of STGC3 and its reduced expression in nasopharyngeal carcinoma. Cell Mol. Biol. Lett. 13: 339-352. http://dx.doi.org/10.2478/s11658-008-0006-9 PMid:18322654   Jensen EV (1966). Mechanism of estrogen action in relation to carcinogenesis. Proc. Can. Cancer Conf. 6: 143-165. PMid:5973472   Jensen EV (2005). The contribution of "alternative approaches" to understanding steroid hormone action. Mol. Endocrinol. 19: 1439-1442. http://dx.doi.org/10.1210/me.2005-0154 PMid:15914713   Jensen EV, Suzuki T, Kawashima T, Stumpf WE, et al. (1968). A two-step mechanism for the interaction of estradiol with rat uterus. Proc. Natl. Acad. Sci. U. S. A. 59: 632-638. http://dx.doi.org/10.1073/pnas.59.2.632 PMid:5238991 PMCid:224719   Li L, He XS, Luo QA, Zhang ZW, et al. (2011). Effect of STGC3 gene deletion mutant on the growth of CNE2 cells. Prog. Biochem. Biophys. 38: 248-253.   Masamha CP and Benbrook DM (2009). Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer Res. 69: 6565-6572. http://dx.doi.org/10.1158/0008-5472.CAN-09-0913 PMid:19638577   Pollard PJ, Briere JJ, Alam NA, Barwell J, et al. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14: 2231-2239. http://dx.doi.org/10.1093/hmg/ddi227 PMid:15987702   Powers MV, Clarke PA and Workman P (2008). Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14: 250-262. http://dx.doi.org/10.1016/j.ccr.2008.08.002 PMid:18772114   Qiu QC, Hu B, He XP, Luo Q, et al. (2012). STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis. Genet. Mol. Biol. 35: 18-26. http://dx.doi.org/10.1590/S1415-47572012005000009 PMid:22481869 PMCid:3313509   Takatani T, Takaoka N, Tatsumi M, Kawamoto H, et al. (2001). A novel missense mutation in human lactate dehydrogenase B-subunit gene. Mol. Genet. Metab. 73: 344-348. http://dx.doi.org/10.1006/mgme.2001.3203 PMid:11509017   Wang HY, Sun BY, Zhu ZH, Chang ET, et al. (2011). Eight-signature classifier for prediction of nasopharyngeal [corrected] carcinoma survival. J. Clin. Oncol. 29: 4516-4525. http://dx.doi.org/10.1200/JCO.2010.33.7741 PMid:22025164   Xiong W, Zeng ZY, Xia JH, Xia K, et al. (2004). A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 64: 1972-1974. http://dx.doi.org/10.1158/0008-5472.CAN-03-3253 PMid:15026332   Yoneda K, Rokutan K, Nakamura Y, Yanagawa H, et al. (2004). Stimulation of human bronchial epithelial cells by IgE-dependent histamine-releasing factor. Am. J. Physiol. Lung Cell. Mol. Physiol. 286: L174-L181. http://dx.doi.org/10.1152/ajplung.00118.2003 PMid:12948934   Yu MC and Yuan JM (2002). Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol. 12: 421-429. http://dx.doi.org/10.1016/S1044579X02000858 PMid:12450728   Zhang J, Liu W, Liu J, Xiao W, et al. (2010). G-protein β2 subunit interacts with mitofusin 1 to regulate mitochondrial fusion. Nat. Commun. 1: 101. http://dx.doi.org/10.1038/ncomms1099 PMid:20981029   Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, et al. (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405-415. http://dx.doi.org/10.1016/S0092-8674(00)81879-6