Publications

Found 13 results
Filters: Author is G. Cheng  [Clear All Filters]
2013
S. Wei, Zan, L. S., Wang, H. B., Cheng, G., Du, M., Jiang, Z., Hausman, G. J., McFarland, D. C., and Dodson, M. V., Adenovirus-mediated interference of FABP4 regulates mRNA expression of ADIPOQ, LEP and LEPR in bovine adipocytes, vol. 12, pp. 494-505, 2013.
Barendse W, Bunch RJ, Thomas MB and Harrison BE (2009). A splice site single nucleotide polymorphism of the fatty acid binding protein 4 gene appears to be associated with intramuscular fat deposition in longissimus muscle in Australian cattle. Anim. Genet. 40: 770-773. http://dx.doi.org/10.1111/j.1365-2052.2009.01913.x PMid:19466936   Bork S, Horn P, Castoldi M, Hellwig I, et al. (2011). Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J. Cell Physiol. 226: 2226-2234. http://dx.doi.org/10.1002/jcp.22557 PMid:21660946   Dodson MV, Jiang Z, Chen J, Hausman GJ, et al. (2010a). Allied industry approaches to alter intramuscular fat content and composition in beef animals. J. Food Sci. 75: R1-R8. http://dx.doi.org/10.1111/j.1750-3841.2009.01396.x PMid:20492190   Dodson MV, Hausman GJ, Guan L, Du M, et al. (2010b). Skeletal muscle stem cells from animals I. Basic cell biology. Int. J. Biol. Sci. 6: 465-474. http://dx.doi.org/10.7150/ijbs.6.465 PMid:20827399 PMCid:2935669   Dodson MV, Hausman GJ, Guan L, Du M, et al. (2010c). Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int. J. Biol. Sci. 6: 691-699. http://dx.doi.org/10.7150/ijbs.6.691 PMid:21103072 PMCid:2990072   Enns JE, Taylor CG and Zahradka P (2011). Variations in Adipokine Genes AdipoQ, Lep, and LepR are Associated with Risk for Obesity-Related Metabolic Disease: The Modulatory Role of Gene-Nutrient Interactions. J. Obes. 2011: 168659. http://dx.doi.org/10.1155/2011/168659 PMid:21773001 PMCid:3136149   Fernyhough ME, Okine E, Hausman G, Vierck JL, et al. (2007). PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33: 367-378. http://dx.doi.org/10.1016/j.domaniend.2007.05.001 PMid:17560753   Fire A, Xu S, Montgomery MK, Kostas SA, et al. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. http://dx.doi.org/10.1038/35888 PMid:9486653   Francke S, Manraj M, Lacquemant C, Lecoeur C, et al. (2001). A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum. Mol. Genet. 10: 2751-2765. http://dx.doi.org/10.1093/hmg/10.24.2751 PMid:11734540   Furuhashi M, Tuncman G, Görgün CZ, Makowski L, et al. (2007). Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447: 959-965. http://dx.doi.org/10.1038/nature05844 PMid:17554340   Hausman GJ, Dodson MV, Ajuwon K, Azain M, et al. (2009). Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87: 1218-1246. http://dx.doi.org/10.2527/jas.2008-1427 PMid:18849378   Hirai S, Matsumoto H, Moriya NH, Kawachi H, et al. (2007a). Follistatin rescues the inhibitory effect of activin A on the differentiation of bovine preadipocyte. Domest. Anim. Endocrinol. 33: 269-280. http://dx.doi.org/10.1016/j.domaniend.2006.06.001 PMid:16829013   Hirai S, Matsumoto H, Hino N, Kawachi H, et al. (2007b). Myostatin inhibits differentiation of bovine preadipocyte. Domest. Anim. Endocrinol. 32: 1-14. http://dx.doi.org/10.1016/j.domaniend.2005.12.001 PMid:16431073   Hoashi S, Hinenoya T, Tanaka A, Ohsaki H, et al. (2008). Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese black cattle. BMC Genet. 9: 84. http://dx.doi.org/10.1186/1471-2156-9-84 PMid:19077218 PMCid:2628680   Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, et al. (1996). Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274: 1377-1379. http://dx.doi.org/10.1126/science.274.5291.1377 PMid:8910278   Jurie C, Cassar-Malek I, Bonnet M, Leroux C, et al. (2007). Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85: 2660-2669. http://dx.doi.org/10.2527/jas.2006-837 PMid:17565066   Lee SH, van der Werf JH, Lee SH, Park EW, et al. (2010). Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean Cattle). Anim. Genet. 41: 442-444. PMid:20331595   Mannen H (2011). Identification and utilization of genes associated with beef qualities. Anim. Sci. J. 82: 1-7. http://dx.doi.org/10.1111/j.1740-0929.2010.00845.x PMid:21269353   Michal JJ, Zhang ZW, Gaskins CT and Jiang Z (2006). The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu x Limousin F2 crosses. Anim. Genet. 37: 400-402. http://dx.doi.org/10.1111/j.1365-2052.2006.01464.x PMid:16879357   Narukami T, Sasazaki S, Oyama K, Nogi T, et al. (2011). Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Anim. Sci. J. 82: 406-411. http://dx.doi.org/10.1111/j.1740-0929.2010.00855.x PMid:21615833   Ockner RK, Manning JA, Poppenhausen RB and Ho WK (1972). A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177: 56-58. http://dx.doi.org/10.1126/science.177.4043.56 PMid:5041774   Poulos SP, Dodson MV and Hausman GJ (2010). Cell line models for differentiation: preadipocytes and adipocytes. Exp. Biol. Med. 235: 1185-1193. http://dx.doi.org/10.1258/ebm.2010.010063 PMid:20864461   Sun YG, Zan LS, Wang HB, Guo HF, et al. (2009). Insulin inhibits the expression of adiponectin and adipoR2 mRNA in cultured bovine adipocytes. Asian-Aust. J. Anim. Sci. 22: 1429-1436.   Taniguchi M, Guan LL, Basarab JA, Dodson MV, et al. (2008a). Comparative analysis on gene expression profiles in cattle subcutaneous fat tissues. Comp. Biochem. Physiol. Part D Genomics Proteomics 3: 251-256. http://dx.doi.org/10.1016/j.cbd.2008.06.002 PMid:20494844   Taniguchi M, Guan LL, Zhang B, Dodson MV, et al. (2008b). Gene expression patterns of bovine perimuscular preadipocytes during adipogenesis. Biochem. Biophys. Res. Commun. 366: 346-351. http://dx.doi.org/10.1016/j.bbrc.2007.11.111 PMid:18060861   Tuncman G, Erbay E, Hom X, De Vivo, I, et al. (2006). A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc. Natl. Acad. Sci. U. S. A. 103: 6970-6975. http://dx.doi.org/10.1073/pnas.0602178103 PMid:16641093 PMCid:1447594   Tuschl T (2001). RNA interference and small interfering RNAs. Chembiochem 2: 239-245. http://dx.doi.org/10.1002/1439-7633(20010401)2:4<239::AID-CBIC239>3.0.CO;2-R   Vionnet N, Hani EH, Dupont S, Gallina S, et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am. J. Hum. Genet. 67: 1470-1480. http://dx.doi.org/10.1086/316887 PMid:11067779 PMCid:1287924   Witthuhn BA and Bernlohr DA (2001). Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine 14: 129-135. http://dx.doi.org/10.1006/cyto.2001.0864 PMid:11396990   Xu A, Wang Y, Xu JY, Stejskal D, et al. (2006). Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 52: 405-413. http://dx.doi.org/10.1373/clinchem.2005.062463 PMid:16423904   Yu JY, DeRuiter SL and Turner DL (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 99: 6047-6052. http://dx.doi.org/10.1073/pnas.092143499 PMid:11972060 PMCid:122899   Zhao C, Tian F, Yu Y, Luo J, et al. (2012). Muscle transcriptomic analyses in Angus cattle with divergent tenderness. Mol. Biol. Rep. 39: 4185-4193. http://dx.doi.org/10.1007/s11033-011-1203-6 PMid:21901422
J. B. Gao, Li, Y. K., Yang, N., Ma, X. H., Adoligbe, C., Jiang, B. J., Fu, C. Z., Cheng, G., and Zan, L. S., Novel SNPs in the exon region of bovine DKK4 gene and their association with body measurement traits in Qinchuan cattle, vol. 12, pp. 6664-6672, 2013.
C. Z. Fu, Wang, H., Mei, C. G., Wang, J. L., Jiang, B. J., Ma, X. H., Wang, H. B., Cheng, G., and Zan, L. S., SNPs at 3'-UTR of the bovine CDIPT gene associated with Qinchuan cattle meat quality traits, vol. 12, pp. 775-782, 2013.
Antonsson BE (1994). Purification and characterization of phosphatidylinositol synthase from human placenta. Biochem. J. 297 (Pt 3): 517-522. PMid:8110188 PMCid:1137864   Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165   Chakraborty R, Zhong Y, de AM, Clemens PR, et al. (1994). Linkage disequilibria among (CA)n polymorphisms in the human dystrophin gene and their implications in carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophies. Genomics 21: 567-570. http://dx.doi.org/10.1006/geno.1994.1315 PMid:7959733   Chen H and Leibenguth F (1995). Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 33: 297-306. http://dx.doi.org/10.1007/BF02399929 PMid:8748455   Deguchi A, Segawa K, Hosaka K, Weinstein IB, et al. (2002). Overexpression of phosphatidylinositol synthase enhances growth and G1 progression in NIH3T3 cells. Jpn. J. Cancer Res. 93: 157-166. http://dx.doi.org/10.1111/j.1349-7006.2002.tb01254.x PMid:11856479   Fu YY, Xiong YZ, Pan G, Cheng L, et al. (2009). Association of the polymorphism of porcine CDIPT gene with carcass and meat quality traits. Chin. J. Anim. Vet. Sci. 40: 787-791.   Hamlin KE, Green RD, Perkins TL, Cundiff LV, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: I. Description of age and weight effects. J. Anim. Sci. 73: 1713-1724. PMid:7673065   Lykidis A, Jackson PD, Rock CO and Jackowski S (1997). The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. J. Biol. Chem. 272: 33402-33409. http://dx.doi.org/10.1074/jbc.272.52.33402 PMid:9407135   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Neilson JR and Sandberg R (2010). Heterogeneity in mammalian RNA 3' end formation. Exp. Cell Res. 316: 1357-1364. http://dx.doi.org/10.1016/j.yexcr.2010.02.040 PMid:20211174 PMCid:2866830   White DA (1973). The Phospholipid Composition of Mammalian Tissues. In: Form and Function of Phospholipids (Ansell GB, Hawthorne JN and Dawson RMC, eds.). Elsevier, Amsterdam, 441-482.   Zhao J, Hyman L and Moore C (1999). Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63: 405-445. PMid:10357856 PMCid:98971   Zhou JP, Zhu XP, Zhang W, Qin F, et al. (2011). A novel single-nucleotide polymorphism in the 5' upstream region of the prolactin receptor gene is associated with fiber traits in Liaoning cashmere goats. Genet. Mol. Res. 10: 2511-2516. http://dx.doi.org/10.4238/2011.October.13.8 PMid:22009863   Zimin AV, Delcher AL, Florea L, Kelley DR, et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10: R42. http://dx.doi.org/10.1186/gb-2009-10-4-r42 PMid:19393038 PMCid:2688933
2012
B. J. Jiang, Zhan, X. L., Fu, C. Z., Wang, H. B., Cheng, G., and Zan, L. S., Identification of ANAPC13 gene polymorphisms associated with body measurement traits in Bos taurus, vol. 11, pp. 2862-2870, 2012.
Aristarkhov A, Eytan E, Moghe A, Admon A, et al. (1996). E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Natl. Acad. Sci. U. S. A. 93: 4294-4299. http://dx.doi.org/10.1073/pnas.93.9.4294 PMid:8633058 PMCid:39529   Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499   Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, et al. (2008). Many sequence variants affecting diversity of adult human height. Nat. Genet. 40: 609-615. http://dx.doi.org/10.1038/ng.122 PMid:18391951   Harper JW, Burton JL and Solomon MJ (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16: 2179-2206. http://dx.doi.org/10.1101/gad.1013102 PMid:12208841   Honda K, Mihara H, Kato Y, Yamaguchi A, et al. (2000). Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 19: 2812-2819. http://dx.doi.org/10.1038/sj.onc.1203609 PMid:10851084   Irniger S, Piatti S, Michaelis C and Nasmyth K (1995). Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81: 269-278. http://dx.doi.org/10.1016/0092-8674(95)90337-2   Jin QJ, Sun JJ, Fang XT, Zhang CL, et al. (2011). Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits. Mol. Biol. Rep. 38: 3129-3135. http://dx.doi.org/10.1007/s11033-010-9983-7 PMid:20140708   King RW, Peters JM, Tugendreich S, Rolfe M, et al. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279-288. http://dx.doi.org/10.1016/0092-8674(95)90338-0   Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009   Lettre G, Jackson AU, Gieger C, Schumacher FR, et al. (2008). Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40: 584-591. http://dx.doi.org/10.1038/ng.125 PMid:18391950 PMCid:2687076   Li F, Chen H, Lei CZ, Ren G, et al. (2010a). Novel SNPs of the bovine GAD1/gad67 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 37: 501-505. http://dx.doi.org/10.1007/s11033-009-9699-8 PMid:19728158   Li F, Chen H, Lei CZ, Ren G, et al. (2010b). Novel SNPs of the bovine NUCB2 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 37: 541-546. http://dx.doi.org/10.1007/s11033-009-9732-y PMid:19728157   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Mateescu RG, Zhang Z, Tsai K, Phavaphutanon J, et al. (2005). Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. J. Hered. 96: 847-853. http://dx.doi.org/10.1093/jhered/esi109 PMid:16251522   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Nkrumah JD, Li C, Basarab JB, Guercio S, et al. (2003). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Can. J. Anim. Sci. 84: 211-219. http://dx.doi.org/10.4141/A03-033   Peters JM (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9: 931-943. http://dx.doi.org/10.1016/S1097-2765(02)00540-3   Ren G, Chen H, Zhang LZ, Lan XY, et al. (2010). A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Mol. Biol. Rep. 37: 417-422. http://dx.doi.org/10.1007/s11033-009-9486-6 PMid:19283511   Rojas CA, Eloy NB, Lima MF, Rodrigues RL, et al. (2009). Overexpression of the Arabidopsis anaphase promoting complex subunit CDC27a increases growth rate and organ size. Plant Mol. Biol. 71: 307-318. http://dx.doi.org/10.1007/s11103-009-9525-7 PMid:19629716   Sambrook J and Russell DW (2002). Molecular Cloning. A Laboratory Manual. 3rd edn. Science Press, Beijing. PMCid:1123728   Sanna S, Jackson AU, Nagaraja R, Willer CJ, et al. (2008). Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40: 198-203. http://dx.doi.org/10.1038/ng.74 PMid:18193045 PMCid:2914680   Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, et al. (2009). Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet. 5: e1000445. http://dx.doi.org/10.1371/journal.pgen.1000445 PMid:19343178 PMCid:2661236   Stroschein SL, Bonni S, Wrana JL and Luo K (2001). Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 15: 2822-2836. PMid:11691834 PMCid:312804   Sudakin V, Ganoth D, Dahan A, Heller H, et al. (1995). The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185-197. PMid:7787245 PMCid:275828   Sun J, Jin Q, Zhang C, Fang X, et al. (2011). Polymorphisms in the bovine ghrelin precursor (GHRL) and Syndecan-1 (SDC1) genes that are associated with growth traits in cattle. Mol. Biol. Rep. 38: 3153-3160. http://dx.doi.org/10.1007/s11033-010-9986-4 PMid:20140707   Takai N, Miyazaki T, Fujisawa K, Nasu K, et al. (2001). Polo-like kinase (PLK) expression in endometrial carcinoma. Cancer Lett. 169: 41-49. http://dx.doi.org/10.1016/S0304-3835(01)00522-5   Tang Z, Bharadwaj R, Li B and Yu H (2001). Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1: 227-237. http://dx.doi.org/10.1016/S1534-5807(01)00019-3   Thornton BR and Toczyski DP (2006). Precise destruction: an emerging picture of the APC. Genes Dev. 20: 3069-3078. http://dx.doi.org/10.1101/gad.1478306 PMid:17114580   Wang J, Li ZJ, Lan XY, Hua LS, et al. (2010). Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Mol. Biol. Rep. 37: 571-577. http://dx.doi.org/10.1007/s11033-009-9816-8 PMid:19760096   Weedon MN and Frayling TM (2008). Reaching new heights: insights into the genetics of human stature. Trends Genet. 24: 595-603. http://dx.doi.org/10.1016/j.tig.2008.09.006 PMid:18950892   Weedon MN, Lettre G, Freathy RM, Lindgren CM, et al. (2007). A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39: 1245-1250. http://dx.doi.org/10.1038/ng2121 PMid:17767157 PMCid:3086278   Weedon MN, Lango H, Lindgren CM, Wallace C, et al. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40: 575-583. http://dx.doi.org/10.1038/ng.121 PMid:18391952 PMCid:2681221   Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006   Zhao J, Li M, Bradfield JP, Zhang H, et al. (2010). The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med. Genet. 11: 96. http://dx.doi.org/10.1186/1471-2350-11-96 PMid:20546612 PMCid:2894790