Publications

Found 7 results
Filters: Author is M.M. Shah  [Clear All Filters]
2012
A. Hassan, Okuta, T., Kato, M., Hatsugai, N., Sano, Y., Ishimori, T., Okazaki, K., Doullah, M. A., and Shah, M. M., Alternaric acid stimulates phosphorylation of His-tagged RiCDPK2, a calcium-dependent protein kinase in potato plants, vol. 11, pp. 2381-2389, 2012.
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3   Doke N, Garas NA and Kuć J (1979). Partial characterization and aspects of the mode of action of a hypersensitivity-inhibiting factor (HIF) isolated from Phytophthora infestans. Physiol. Plant Pathol. 15: 127-140. http://dx.doi.org/10.1016/0048-4059(79)90061-4   Furuichi N and Nishimura S (1984). Isolation of alternaric acid from the germination fluids of Alternaria solani. Ann. Phytopathol. Soc. Jpn. 50: 128.   Furuichi N and Suzuki J (1990). Purification and properties of suppressor glucan isolated from Phytophthora infestans. Ann. Phytopathol. Soc. Jpn. 56: 457-467. http://dx.doi.org/10.3186/jjphytopath.56.457   Furuichi N, Nishimura S, Kimura Y, Hamzaki H, et al. (1984). Production of alternaric acid from Alternaria solani and its pathological role. Ann. Phytopathol. Soc. Jpn. 50: 412-413.   Furuichi N, Nishimura S and Langsdorf G (1992). Effect of alternaric acid, a toxin of Alternaria solani, on the hypersensitive response of potato to Phytophthora infestans. Ann. Phytopathol. Soc. Jpn. 58: 1-7. http://dx.doi.org/10.3186/jjphytopath.58.1   Furuichi N, Anderson AJ, Suzuki Y and Takemoto JY (1994). Elicitor and Suppressor of Phytophthora infestans Stimulate Phosphorylation of Plasma Membrane Proteins from Potato and Bean Tissues. In: Host Specific Toxin: Biosynthesis, Receptor and Molecular Biology (Kohmoto K and Yoder OC, eds.). Tottori University Press, Tottori, 273-274.   Furuichi N, Suzuki Y, Matrsubara M, Aoyagi M, et al (1998). Identification of Receptor Site of the Suppressor Isolated from Phytophthora infestans in Potato Plasma Membrane by Using Surface Plasmonl Biosensor. In: Molecular Genetics of Host- Specific Toxins in Plant Disease (Kohmoto K and Yoder OC, eds.). Kluwer Academic Publisher, Netherlands, 367-368. http://dx.doi.org/10.1007/978-94-011-5218-1_40   Gardner JM, Mansour IS and Scheffer RP (1972). Effects of the host-specific toxin of Periconia circinata on some properties of sorghum plasma membranes. Physiol. Plant Pathol. 2: 197-206. http://dx.doi.org/10.1016/0048-4059(72)90002-1   Harmon AC, Yoo BC and McCaffery C (1994). Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33: 7278-7287. http://dx.doi.org/10.1021/bi00189a032 PMid:8003491   Harmon AC, Gribskov M and Harper JF (2000). CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci. 5: 154-159. http://dx.doi.org/10.1016/S1360-1385(00)01577-6   Harper JF, Binder BM and Sussman MR (1993). Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli. Biochemistry 32: 3282-3290. http://dx.doi.org/10.1021/bi00064a010 PMid:7916621   Hong B, Ichida A, Wang Y, Gens JS, et al. (1999). Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum. Plant Physiol. 119: 1165-1176. http://dx.doi.org/10.1104/pp.119.4.1165 PMid:10198075 PMCid:32001   Langsdorf G, Furuichi N and Nishimura S (1989). Evaluation of Alternaric Acid in Pathogenesis of Alternaria solani. In: Host-Specific Toxins: Recognition and Specificity Factors in Plant Disease (Kohmoto K and Durbin RD, eds.). Tottori University Press, Tottori, 45-58.   Langsdorf G, Furuichi N, Doke N and Nishimura S (1990). Investigations on Alternaria solani infections: Detection of alternaric acid and a susceptibility-inducing factor in the spore-germination fluid of A. solani. J. Phytopathol. 128: 271-282. http://dx.doi.org/10.1111/j.1439-0434.1990.tb04274.x   Langsdorf G, Park P and Nishimura S (1991). Investigations on Alternaria solani infections: Effect of alternaric acid on the ultrastructure of tomato cells. Ann. Phytopathol. Soc. Jpn. 57: 32-40. http://dx.doi.org/10.3186/jjphytopath.57.32   Martin ML and Busconi L (2000). Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J. 24: 429-435. http://dx.doi.org/10.1046/j.1365-313x.2000.00889.x PMid:11115124   Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Kamada H, et al. (1993). Cloning and characterization of two cDNAs encoding casein kinase II catalytic subunits in Arabidopsis thaliana. Plant Mol. Biol. 21: 279-289. http://dx.doi.org/10.1007/BF00019944 PMid:7678767   Nagy F, Kay SA and Chua NH (1988). Analysis of Gene Expression in Transgenic Plants. In: Plant Molecular Biology Manual B4 (Gelivin SV, Schilperoort RA and Verma DPS, eds.). Kluwer Academic Publishers, Dordrecht, 1-29.   Nishimura S and Kohmoto K (1983). Roles of Toxins in Pathogenesis. In: Toxins and Plant Pathogenesis (Daly JM and Deverall BJ, eds.). Academic Press, New York, 135-157. PMid:6888497   Oku H, Shiraishi T, Kim HM, Kato T, et al (1993). Host-Selective Suppressor for Defense Response from Mycosphaerella pinodes. In: Host-Specific Toxin: Biosynthesis, Receptor and Molecular Biology (Kohmoto K and Yoder OC, eds.). Tottori University Press, Tottori, 49-59.   Okuta T, Furuichi N and Kusakari T (1999). Cloning of potato CDPK genes coding the receptor protein for the suppressor of Phytophthora infestans. Ann. Phytopathol. Soc. Jpn. 65: 327.   Otani H (2000). Host recognition by plant pathogens and role of host-specific toxins. J. Gen. Plant Pathol. 66: 278-280. http://dx.doi.org/10.1007/PL00012961   Otani H, Kohmoto K, Kodama M and Nishimura S (1991). Role of Host-Specific Toxins in the Pathogenesis of Alternaria alternata. In: Molecular Strategies of Pathogens and Host Plants (Patil SS, ed.). Springer-Verlag, New York, 147-149.   Otani H, Kohmoto K and Kodama M (1995). Alternaria toxins and their effects on host plants. Can. J. Bot. 73: 453-458. http://dx.doi.org/10.1139/b95-282   Romeis T, Piedras P and Jones JD (2000). Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12: 803-816. PMid:10810151 PMCid:139928   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Vol. 1. Cold Spring Harbor Laboratory Press, New York.   Tabuchi H and Ichihara A (1992). Stereochemistry of alternaric acid; synthesis of the C (9)-C (14) fragment. Tetrahedron Lett. 33: 4933-4936. http://dx.doi.org/10.1016/S0040-4039(00)61238-8   Tabuchi H, Oikawa H and Ichihara A (1994). Biosynthetic study of alternaric acid: isolation of plausible biosynthetic intermediates and origins of the hydrogen and oxygen atoms. J. Chem. Soc. Perkin Trans. 1: 2283-2839.
2011
H. Rahman, Pekic, S., Lazic-Jancic, V., Quarrie, S. A., Shah, S. M. A., Pervez, A., and Shah, M. M., Molecular mapping of quantitative trait loci for drought tolerance in maize plants, vol. 10, pp. 889-901, 2011.
Agrama HAS and Moussa ME (1996). Mapping QTLs in breeding for drought tolerance in maize. Euphytica 91: 89-97. doi:10.1007/BF00035278 Ajmone MP, Monfredini G, Brandolini A, Melchinger AE, et al. (1996). Identification of QTL for grain yield in an elite hybrid of maize: repeatability of map position and effects in independent samples derived from the same population. Maydica 41: 49-57. Austin DF and Lee M (1998). Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci. 38: 1296-1308. doi:10.2135/cropsci1998.0011183X003800050029x Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, et al. (2003). Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Sci. 43: 1457-1469. doi:10.2135/cropsci2003.1457 Basten CJ, Weir BS and Zeng ZB (1996). QTL-Cartographer: a Suite of Programs for Mapping Quantitative Trait Loci. Plant and Animal Genome IV Conference, San Diego, 108. Beavis WD, Grant D, Albertsen M and Fincher R (1991). Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141-145. doi:10.1007/BF00226242 Bruce WB, Edmeades GO and Barker TC (2002). Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 53: 13-25. doi:10.1093/jexbot/53.366.13 PMid:11741036 Burr B and Burr FA (1991). Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet. 7: 55-60. PMid:2035192 Burr B, Burr FA, Thompson KH, Albertson MC, et al. (1988). Gene mapping with recombinant inbreds in maize. Genetics 118: 519-526. PMid:3366363    PMCid:1203305 Coe EH, Hoisington DA and Neuffer MG (1988). The Genetics of Corn (Sprague GF and Dudley IW, eds.). American Society of Agronomy, Madison. Davis GL, McMullen MD, Baysdorfer C, Musket T, et al. (1999). A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152: 1137-1172. PMid:10388831    PMCid:1460676 Edwards MD, Stuber CW and Wendel JF (1987). Molecular-marker-facilitated investigations of quantitative-trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics 116: 113-125. PMid:3596228    PMCid:1203110 Fitz Gerald JN, Lehti-Shiu MD, Ingram PA, Deak KI, et al. (2006). Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172: 485-498. doi:10.1534/genetics.105.047555 PMid:16157665    PMCid:1456176 Frova C, Krajewski P, Di Fonzo N, Villa M, et al. (1999). Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor. Appl. Genet. 99: 280-288. doi:10.1007/s001220051233 Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, et al. (1993). Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134: 917-930. PMid:8102344    PMCid:1205526 Hallauer AR and Miranda JB (1989). Quantitative Genetics in Maize Breeding. 2nd edn. Iowa State University Press, Ames. Hartung W and Davies WJ (1991). Drought-Induced Changes in Physiology and ABA. In: Abscisic-Acid: Physiology and Biochemistry (Davies WJ and Jones HG, eds.). Scientific Publishers Limited, Oxford, 63-80. Helentjaris T, Slocum M, Wright S, Schaefer A, et al. (1986). Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72: 761-769. doi:10.1007/BF00266542 Helentjaris T, Weber D and Wright S (1988). Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118: 353-363. PMid:17246413    PMCid:1203287 Hoisington DA and Coe EH Jr (1990). Mapping in Maize Using RFLPs. In: Gene Manipulation in Plant Improvement (Gustafson JP, ed.). Plenum Press, New York, 331-352. Kebede H, Subudhi PK, Rosenow DT and Nguyen HT (2001). Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor. Appl. Genet. 103: 266-276. doi:10.1007/s001220100541 Kosambi DD (1944). The estimation of the map from the recombination values. Ann. Eugen. 12: 172-175. doi:10.1111/j.1469-1809.1943.tb02321.x Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, et al. (2007). Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor. Appl. Genet. 114: 285-294. doi:10.1007/s00122-006-0431-y PMid:17115129 Lander ES, Green P, Abrahamson J, Barlow A, et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181. doi:10.1016/0888-7543(87)90010-3 Lebreton C, Lazic-Jancic V, Steed A, Pekic S, et al. (1995). Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46: 853-865. doi:10.1093/jxb/46.7.853 Li XH, Gao GL, Liang XL, Yuan LX, et al. (2002). Genetic diversity of drought tolerance at flowering time in elite maize germplasm. Acta Agron. Sin. 28: 595-600. Malamy JE (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28: 67-77. doi:10.1111/j.1365-3040.2005.01306.x PMid:16021787 Mather K and Jinks JL (1982). Biometrical Genetics. 3rd edn. Chapman and Hall, London. Meyre D, Leonardi A, Brisson G and Vartanian N (2001). Drought-adaptive mechanisms involved in the escape/tolerance strategies of Arabidopsis Landsberg erecta and Columbia ecotypes and their F1 reciprocal progeny. J. Plant Physiol. 158: 1145-1152. doi:10.1078/S0176-1617(04)70141-8 Morgan JM (1995). Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Res. 40: 143-152. doi:10.1016/0378-4290(94)00100-Q Murray M, Cramer J, Ma Y, West D, et al. (1988). Agrigenetics maize RFLP linkage map. Maize Genet. Coop. Newsl. 62: 89-91. Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325. doi:10.1093/nar/8.19.4321 PMid:7433111    PMCid:324241 Nelson N (1944). A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380. Passioura JB (1982). The Role of Root System Characteristics in the Drought Resistance of Crop Plants. In: Drought Resistance in Crops with Emphasis on Rice, Manila, 71-82. Paterson AH, Lander ES, Hewitt JD, Peterson S, et al. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721-726. doi:10.1038/335721a0 PMid:2902517 Price AH, Cairns JE, Horton P, Jones HG, et al. (2002). Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J. Exp. Bot. 53: 989-1004. doi:10.1093/jexbot/53.371.989 PMid:11971911 Qiu F, Zheng Y, Zhang Z and Xu S (2007). Mapping of QTL associated with water-logging tolerance during the seedling stage in maize. Ann. Bot. 99: 1067-1081. doi:10.1093/aob/mcm055 PMid:17470902 Quarrie SA (1991). Implications of Genetic Differences in ABA Accumulation for Crop Production. In: Abscisic Acid: Physiology and Biochemistry (Davies WJ and Jone HG, eds.). Bios Scientific Publishers, Oxford, 227-243. Quarrie SA, Whitford PN, Appleford NEJ, Wang TL, et al. (1988). A monoclonal antibody to (S)-abscisic acid: its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 173: 330-339. doi:10.1007/BF00401020 Quarrie SA, Lazic-Jacic V, Kovaccvic D, Steed A, et al. (1999). Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J. Exptl. Bot. 50: 1299-1306. doi:10.1093/jexbot/50.337.1299 Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, et al. (1997). Identification of quantitative trait loci under drought conditions in tropical maize. II: Yield components and marker selection strategies. Theor. Appl. Genet. 94: 887-896. doi:10.1007/s001220050492 Sanguineti MC, Tuberosa R, Landi P, Salvi S, et al. (1999). QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50: 1289-1297. doi:10.1093/jexbot/50.337.1289 Sari-Gorla M, Krajewski P, Di-Fonzo N, Villa M, et al. (1999). Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99: 289-295. doi:10.1007/s001220051234 SAS I (1998). SAS Language Guide for Personal Computers. 6.03 edn. SAS, Cary. Shah MM, Gill KS, Baenziger PS, Yen Y, et al. (1999). Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39: 1728-1732. doi:10.2135/cropsci1999.3961728x Sharp PJ, Kreis M, Shewry PR and Gale MD (1988). Location of β-amylase sequences in wheat and its relatives. Theor. Appl. Genet. 75: 286-290. doi:10.1007/BF00303966 Singletary GW and Below FE (1990). Nitrogen-induced changes in the growth and metabolism of developing maize kernels grown in vitro. Plant Physiol. 92: 160-167. doi:10.1104/pp.92.1.160 PMid:16667240    PMCid:1062264 Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, et al. (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839. PMid:1468633    PMCid:1205218 Thompson FB and Leyton L (1971). Method for measuring the leaf surface area of complex shoots. Nature 229: 572. DOI: 10.1038/229572a0. doi:10.1038/229572a0 PMid:16059351 Tuberosa R, Salvi S, Sanguineti MC, Landi P, et al. (2002a). Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot. 89: 941-963. doi:10.1093/aob/mcf134 PMid:12102519 Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, et al. (2002b). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48: 697-712. doi:10.1023/A:1014897607670 PMid:11999844 Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, et al. (2003). Searching for QTLs controlling root traits in maize: a critical appraisal. Plant Soil. 255: 35-54. doi:10.1023/A:1026146615248 Weber D and Helentjaris T (1989). Mapping RFLP loci in maize using B-A translocations. Genetics 121: 583-590. PMid:2565856    PMCid:1203642 Xiao YN, Li XH, George ML, Li MS, et al. (2005). Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol. Biol. Rep. 23: 155-165. doi:10.1007/BF02772706 Yang DL, Jing RL, Chang XP and Li W (2007). Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176: 571-584. doi:10.1534/genetics.106.068361 PMid:17287530    PMCid:1893045 Zinselmeier C, Jeong BR and Boyer JS (1999). Starch and the control of kernel number in maize at low water potentials. Plant Physiol. 121: 25-36. doi:10.1104/pp.121.1.25 PMid:10482657    PMCid:59374
2010
M. M. Shah, Hassan, S. W., Maqbool, K., Shahzadi, I., and Pervez, A., Comparisons of DNA marker-based genetic diversity with phenotypic estimates in maize grown in Pakistan, vol. 9, pp. 1936-1945, 2010.
Bligh HFJ, Blackhall NW, Edwards KJ and McClung AM (1999). Using amplified fragment length polymorphisms and simple sequence length polymorphisms to identify cultivars of brown and white milled rice. Crop Sci. 39: 1715-1721. http://dx.doi.org/10.2135/cropsci1999.3961715x   Cox TS, Kiang YT, Gorman MB and Rodgers DM (1985). Relationship between coefficient of parentage and genetic similarity indices in the soybean. Crop Sci. 25: 529-532. http://dx.doi.org/10.2135/cropsci1985.0011183X002500030023x   Franco J, Crossa J, Ribaut JM, Betran J, et al. (2001). A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor. Appl. Genet. 103: 944-952. http://dx.doi.org/10.1007/s001220100641   Ghafoor S, Shah MM, Ahmad H, Swati ZA, et al. (2007). Molecular characterization of Ephedra species found in Pakistan. Genet. Mol. Res. 6: 1123-1130. PMid:18273806   Habib R, Shah MM and Swati ZA (2006). Assessment of Genetic Variability in Synthetic Hexaploid Wheat Conferring Resistance Against Fusarium Head Blight. In: 'Breeding for Success: Diversity in Action. Proceedings of the 13th Australasian Plant Breeding Conference (Mercer CF, ed.). New Zealand Grassland Association, Christchurch, 1228-1237.   Iqbal MJ and Rayburn AL (1994). Stability of RAPD markers for determining cultivar specific DNA profiles in rye (Secale cereale L.). Euphytica 75: 215-220. http://dx.doi.org/10.1007/BF00025606   Iqbal MJ, Aziz N, Saeed NA, Zafar Y, et al. (1997). Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet. 94: 139-144. http://dx.doi.org/10.1007/s001220050392 PMid:19352756   Iva B, Snežana MD, Milomir F and Kosana K (2005). Genetic characterization of early maturing maize hybrids (Zea mays L.) obtained by protein and RAPD markers. Genetika 37: 235-243. http://dx.doi.org/10.2298/GENSR0503235B   Jarne P and Lagoda PJL (1996). Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11: 424-429. http://dx.doi.org/10.1016/0169-5347(96)10049-5   Joshi CP and Nguyen HT (1993). Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome 36: 602-609. http://dx.doi.org/10.1139/g93-081 PMid:8349131   Kafkas S, Özgen M, Dogan Y, Özcan B, et al. (2008). Molecular characterization of Mulberry accessions in Turkey by AFLP markers. J. Am. Soc. Hort. Sci. 133: 593-597.   Lübberstedt T, Melchinger AE, Dußle C, Vuylsteke M, et al. (2000). Relationships among early European maize inbreds IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci. 40: 783-791.   McCouch SR, Kochert G, Yu ZH, Wang ZY, et al. (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815-829. http://dx.doi.org/10.1007/BF00273666   Melchinger AE, Messmer MM, Lee M, Woodman WL, et al. (1991). Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci. 31: 669-678. http://dx.doi.org/10.2135/cropsci1991.0011183X003100030025x   Mukhtar MS, Rahmanw MU and Zafar Y (2002). Assessment of genetic diversity among wheat (Triticum aestivum L.) cultivars from a range of localities across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128: 417-425. http://dx.doi.org/10.1023/A:1021261811454   Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292. http://dx.doi.org/10.1086/282771   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Popi J, Rajnpreht J, Kannenberg LW and Pauls KP (2000). Random amplified polymorphic DNA-based evaluation of diversity in the hierarchical, open-ended population enrichment maize breeding system. Crop Sci. 40: 619-625. http://dx.doi.org/10.2135/cropsci2000.403619x   Shah MM, Gill KS, Baenziger PS, Yen Y, et al. (1999). Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39: 1728-1732. http://dx.doi.org/10.2135/cropsci1999.3961728x   Shah MM, Yen Y, Gill KS and Baenziger PS (2000). Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica 114: 135-142. http://dx.doi.org/10.1023/A:1003993930447   Shah MM, Hassan SW and Swati ZA (2006). Identifying Genetic Diversity in a Set of Pakistani Maize Germplasm Using RAPD Analyses. In: Proceedings of the 13th Australasian Plant Breeding Conference 'Breeding for Success: Diversity in Action' (Mercer DF, ed.). New Zealand Grassland Association, Christchurch, 1026-1030.   Smith JSC (1984). Genetic variability within U.S. hybrid maize: multivariate analysis of isozyme data. Crop Sci. 24: 1041-1046. http://dx.doi.org/10.2135/cropsci1984.0011183X002400060009x   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agr. 88: 745-755. http://dx.doi.org/10.1002/jsfa.3154   Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, et al. (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839. PMid:1468633 PMCid:1205218   Troggio M, Malacarne G, Coppola G, Segala C, et al. (2007). A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genetics 176: 2637-2650. http://dx.doi.org/10.1534/genetics.106.067462 PMid:17603124 PMCid:1950661   Troyer AF, Openshaw SJ and Knittle KH (1983). Measurement of Genetic Diversity Among Commercial Corn Hybrids Method. ASA Abstracts, Madison.   Weining S and Langridge P (1991). Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor. Appl. Genet. 82: 209-216. http://dx.doi.org/10.1007/BF00226215   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606   Wrigley CW and Shepherd KW (1977). Pedigree investigation using biochemical markers: the wheat cultivar Gabo. Aust. J. Exp. Agric. Anim. Husb. 17: 1028-1031. http://dx.doi.org/10.1071/EA9771028   Xia Z and Achar PN (2001). Random amplified polymorphic DNA and polymerase chain reaction markers for the differentiation and detection of Stenocarpella maydis in maize seeds. J. Phytopathol. 149: 35-44. http://dx.doi.org/10.1046/j.1439-0434.2001.00572.x   Zhang C, ShiMeng S, DeMin J, ZhiLiang S, et al. (1998). Rapid identification of twelve elite maize inbred lines using RAPD markers. Acta Agron. Sin. 24: 718-722.   Zhang Y, Mian MAR and Bouton JH (2006). Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci. 46: 497-511. http://dx.doi.org/10.2135/cropsci2004.0572
I. Shahzadi, Ahmed, R., Hassan, A., and Shah, M. M., Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis, vol. 9, pp. 386-393, 2010.
Aljanabi SM, Forget L and Dookun A (1999). An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Mol. Biol. Rep. 17: 1-8. http://dx.doi.org/10.1023/A:1007692929505   Dellaporta SL, Wood J and Hicks JB (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21. http://dx.doi.org/10.1007/BF02712670   Deshmukh VP, Thakare PV, Chaudhari US and Gawande PA (2007). A simple method for isolation of genomic DNA from fresh and dry leaves of Terminalia arjuna (Roxb.) Wight and Argot. Electron. J. Biotechnol. 10: 468-472.   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Ghafoor S, Shah MM, Ahmad H, Swati ZA, et al. (2007). Molecular characterization of Ephedra species found in Pakistan. Genet. Mol. Res. 6: 1123-1130. PMid:18273806   Hills PN and Van Staden J (2002). An improved DNA extraction procedure for plant tissues with a high phenolic content. S. Afr. J. Bot. 68: 549-550.   Katterman FR and Shattuck VI (1983). An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins. Prep. Biochem. 13: 347-359. http://dx.doi.org/10.1080/00327488308068177 PMid:6647418   Kaul PN, Bhattacharya AK, Rao BRR, Syamasundar KV, et al. (2005). Essential oil composition of Tagetes minuta L. fruits. J. Essent. Oil Res. 17: 184-185. http://dx.doi.org/10.1080/10412905.2005.9698869   Kim SH and Hamada T (2005). Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotechnol. Lett. 27: 1841-1845. http://dx.doi.org/10.1007/s10529-005-3891-2 PMid:16328977   Lawrence BM (1985). A review of the world production of essential oils - 1984. Perfumer Flavorist 10: 1-16.   Mangena T and Muyima NY (1999). Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana and Rosmarinus officinalis on selected bacteria and yeast strains. Lett. Appl. Microbiol. 28: 291-296. http://dx.doi.org/10.1046/j.1365-2672.1999.00525.x PMid:10212442   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Rogers SO and Bendich AJ (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69-76. http://dx.doi.org/10.1007/BF00020088   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Sarwat M, Negi MS, Lakshmikumaran M, Tyagi AK, et al. (2006). A standardized protocol for genomic DNA isolation from Terminalia arjuna for genetic diversity analysis. Electron. J. Biotechnol. 9: 86-91. http://dx.doi.org/10.2225/vol9-issue1-fulltext-3   Schneerman MC, Mwangi J, Hobart B, Arbuckle J, et al. (2002). The dried corncob as a source of DNA for PCR analysis. Plant Mol. Biol. Rep. 20: 59-65. http://dx.doi.org/10.1007/BF02801933   Shah MM, Yen Y, Gill KS and Baenziger PS (2000). Comparisons of RFLP and PCR-based markers to detect polymorphism between wheat cultivars. Euphytica 114: 135-142. http://dx.doi.org/10.1023/A:1003993930447   Soule JA (1993a). Tagetes minuta: Potential New Herbs from South America. In: New Crops (Janick J and Simon JE, eds.). Wiley, New York, 649-654.   Soule JA (1993b). Medicinal and beverage uses of Tagetes (Tageteae: Compositae). Am. J. Bot. 80: 177.   Suman PSK, Ajit KS, Darokar MP and Kumar S (1999). Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol. Biol. Rep. 17: 1-7. http://dx.doi.org/10.1023/A:1017213630972   Warude D, Chavan P, Joshi K and Patwardhan B (2003). DNA isolation from fresh, dry plant samples with highly acidic tissue extracts. Plant Mol. Biol. Rep. 21: 467. http://dx.doi.org/10.1007/BF02772600   Wiese B, Quiroga OE, Vigo MS and Nolasco SM (1992). Seeds of Tagetes minuta L. chemical composition of seed oil and residual seed meal. [Semilla de Tagete minuta L. composición química del aceite seminal y de la harina residual de extracción]. An. Asoc. Quím. Argent. 80: 487-491.