Publications
Found 37 results
Filters: Author is J.B.S. Ferraz [Clear All Filters]
“Allelic and genotypic frequencies of the DMRT3 gene in the Brazilian horse breed Mangalarga Marchador and their association with types of gait”, Genetics and Molecular Research, vol. 18, no. 1, 2019.
, “Estimation of variance components for carcass and production traits in Guzerat cattle”, Genetics and Molecular Research, vol. 18, no. 3, 2019.
, “Genomic regions and genes associated with carcass quality in Nelore cattle”, Genetics and Molecular Research, vol. 18, no. 1, 2019.
, “Inclusion of cytoplasmic lineage effect and direct-maternal genetic covariance for genetic evaluation of growth traits in Nellore cattle”, vol. 15, p. -, 2016.
, “Inclusion of cytoplasmic lineage effect and direct-maternal genetic covariance for genetic evaluation of growth traits in Nellore cattle”, vol. 15, p. -, 2016.
, “Multibreed genetic evaluation in bovines using simulated data employing a composite population”, vol. 15, p. -, 2016.
, “Multibreed genetic evaluation in bovines using simulated data employing a composite population”, vol. 15, p. -, 2016.
, “Systems genetics and genome-wide association approaches for analysis of feed intake, feed efficiency, and performance in beef cattle”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe contributions of Núcleo de Criadores de Nelore do Norte do Paraná, Luciano Borges (Rancho da Matinha), and Eduardo Penteado Cardoso (Fazenda Mundo Novo) are gratefully acknowledged. We would like to thank Dr. Zhong Wang for help with the gwas.lasso package. Research supported in part by São Paulo Research Foundation (FAPESP, #2012/02039-9, #2013/26902-0, #2014/14121-7, #2013/20571-2, and #2014/07566-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #473249/2013-8 and #442345/2014-3). REFERENCESAlexandre PA, Kogelman LJA, Santana MHA, Passarelli D, et al (2015). Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics 16: 1073. http://dx.doi.org/10.1186/s12864-015-2292-8 Anderson RV, Rasby RJ, Klopfenstein TJ and RT Clark. (2005). An evaluation of production and economic efficiency of two beef systems from calving to slaughter. J. Anim. Sci. 83: W 694-704. Chen Y, Gondro C, Quinn K, Herd RM, et al (2011). Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Anim. Genet. 42: 475-490. http://dx.doi.org/10.1111/j.1365-2052.2011.02182.x Das K, Li J, Wang Z, Tong C, et al (2011). A dynamic model for genome-wide association studies. Hum. Genet. 129: 629-639. http://dx.doi.org/10.1007/s00439-011-0960-6 Do DN, Ostersen T, Strathe AB, Mark T, et al (2014). Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC Genet. 15: 27. http://dx.doi.org/10.1186/1471-2156-15-27 Do DN, Janss LLG, Jensen J, Kadarmideen HN, et al (2015). SNP annotation-based whole genomic prediction and selection: an application to feed efficiency and its component traits in pigs. J. Anim. Sci. 93: 2056-2063. http://dx.doi.org/10.2527/jas.2014-8640 Gantz I, Fong TM, et al (2003). The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 284: E468-E474. http://dx.doi.org/10.1152/ajpendo.00434.2002 Gomes RC, Silva SL, Carvalho ME, Rezende FM, et al (2013). Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle. Genet. Mol. Res. 12: 2923-2936. http://dx.doi.org/10.4238/2013.August.12.8 Havlík P, Valin H, Herrero M, Obersteiner M, et al (2014). Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 111: 3709-3714. http://dx.doi.org/10.1073/pnas.1308044111 Hoti F, Sillanpää MJ, et al (2006). Bayesian mapping of genotype x expression interactions in quantitative and qualitative traits. Heredity (Edinb) 97: 4-18. http://dx.doi.org/10.1038/sj.hdy.6800817 Huang W, Sherman BT, Lempicki RA, et al (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. http://dx.doi.org/10.1038/nprot.2008.211 Ji JD, Lee WJ, Kong KA, Woo JH, et al (2010). Association of STAT4 polymorphism with rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Mol. Biol. Rep. 37: 141-147. http://dx.doi.org/10.1007/s11033-009-9553-z Kadarmideen HN, von Rohr P, Janss LLG, et al (2006). From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm. Genome 17: 548-564. http://dx.doi.org/10.1007/s00335-005-0169-x Kies AK, Gerrits WJ, Schrama JW, Heetkamp MJ, et al (2005). Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 135: 1131-1138. Kindt ASD, Navarro P, Semple CA, Haley CS, et al (2013). The genomic signature of trait-associated variants. BMC Genomics 14: 108. http://dx.doi.org/10.1186/1471-2164-14-108 Koufariotis L, Chen YP, Bolormaa S, Hayes BJ, et al (2014). Regulatory and coding genome regions are enriched for trait associated variants in dairy and beef cattle. BMC Genomics 15: 436. http://dx.doi.org/10.1186/1471-2164-15-436 Li J, Das K, Fu G, Li R, et al (2011). The Bayesian lasso for genome-wide association studies. Bioinformatics 27: 516-523. http://dx.doi.org/10.1093/bioinformatics/btq688 Lkhagvadorj S, Qu L, Cai W, Couture OP, et al (2010). Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R494-R507. http://dx.doi.org/10.1152/ajpregu.00632.2009 McBride BW, Kelly JM, et al (1990). Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: a review. J. Anim. Sci. 68: 2997-3010. http://dx.doi.org/10.2527/1990.6892997x Moore SS, Mujibi FD, Sherman EL, et al (2009). Molecular basis for residual feed intake in beef cattle. J. Anim. Sci. 87 (Suppl): E41-E47. http://dx.doi.org/10.2527/jas.2008-1418 Nkrumah JD, Basarab JA, Wang Z, Li C, et al (2007). Genetic and phenotypic relationships of feed intake and measures of efficiency with growth and carcass merit of beef cattle. J. Anim. Sci. 85: 2711-2720. http://dx.doi.org/10.2527/jas.2006-767 Richardson EC, Herd RM, et al (2004). Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Aust. J. Exp. Agric. 44: 431-440. http://dx.doi.org/10.1071/EA02221 Richardson EC, Herd RM, Archer JA, Arthur PF, et al (2004). Metabolic differences in Angus steers divergently selected for residual feed intake. Aust. J. Exp. Agric. 44: 441-452. http://dx.doi.org/10.1071/EA02219 Rincon G, Farber EA, Farber CR, Nkrumah JD, et al (2009). Polymorphisms in the STAT6 gene and their association with carcass traits in feedlot cattle. Anim. Genet. 40: 878-882. http://dx.doi.org/10.1111/j.1365-2052.2009.01934.x Rolf MM, Taylor JF, Schnabel RD, McKay SD, et al (2012). Genome-wide association analysis for feed efficiency in Angus cattle. Anim. Genet. 43: 367-374. http://dx.doi.org/10.1111/j.1365-2052.2011.02273.x Santana MHA, Rossi PJuniorAlmeidaR, Cucco DC, et al (2012). Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livest. Sci. 145: 252-257. http://dx.doi.org/10.1016/j.livsci.2012.02.012 Santana MHA, Utsunomiya YT, Neves HHR, Gomes RC, et al (2014). Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC Genet. 15: 21. http://dx.doi.org/10.1186/1471-2156-15-21 Sargolzaei M, Chesnais JP, Schenkel FS, et al (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15: 478. http://dx.doi.org/10.1186/1471-2164-15-478 Serão NV, González-Peña D, Beever JE, Faulkner DB, et al (2013). Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genet. 14: 94. http://dx.doi.org/10.1186/1471-2156-14-94 Villa-Angulo R, Matukumalli LK, Gill CA, Choi J, et al (2009). High-resolution haplotype block structure in the cattle genome. BMC Genet. 10: 19. http://dx.doi.org/10.1186/1471-2156-10-19 Yang J, Manolio TA, Pasquale LR, Boerwinkle E, et al (2011). Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43: 519-525. http://dx.doi.org/10.1038/ng.823 Zhang F, Huang J, Li Q, Ju Z, et al (2010). Novel single nucleotide polymorphisms (SNPs) of the bovine STAT4 gene and their associations with production traits in Chinese Holstein cattle. Afr. J. Biotechnol. 9: 4003-4008.
“Genome-wide association with residual body weight gain in Bos indicus cattle”, vol. 14. pp. 5229-5233, 2015.
, “Comparison of bivariate and multivariate joint analyses on the selection loss of beef cattle”, vol. 13, pp. 4036-4045, 2014.
, “Genotype by environment interaction for post-weaning weight gain, scrotal circumference, and muscling score of composite beef cattle in different regions of Brazil”, vol. 13, pp. 3048-3059, 2014.
, “Quantitative genetic study of age at subsequent rebreeding in Nellore cattle by using survival analysis”, vol. 13, pp. 4071-4082, 2014.
, “Sire effects on carcass and meat quality traits of young Nellore bulls”, vol. 13, pp. 3250-3264, 2014.
, , “Identification and association of polymorphisms in CAPN1 and CAPN3 candidate genes related to performance and meat quality traits in chickens”, vol. 12, pp. 472-482, 2013.
, Anadón HLS (2002). Biological, Nutritional, and Processing Factors Affecting Breast Meat Quality of Broilers. Doctoral thesis, Virginia Polytechnic Institute and State University, Virginia.
Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186.
http://dx.doi.org/10.1016/S0378-1119(99)00219-X
Dransfield E and Sosnicki AA (1999). Relationship between muscle growth and poultry meat quality. Poult. Sci. 78: 743-746.
PMid:10228972
Ewing B and Green P (1998). Base-calling of automated sequencer traces using Phred II. Error probabilities. Genome Res. 8: 186-194.
PMid:9521922
Falconer DS and Mackay TFC (2001). Introducción a la Genética Cuantitativa. 4ª ed. Acribia, Zaragoza.
Gaya LG, Ferraz JB, Rezende FM, Mourao GB, et al. (2006). Heritability and genetic correlation estimates for performance and carcass and body composition traits in a male broiler line. Poult. Sci. 85: 837-843.
PMid:16673760
Gaya LG, Mourão GB, Ferraz JBS, Mattos EC, et al. (2011). Estimates of heritability and genetic correlations for meat quality traits in broilers. Sci. Agric. 68: 620-625.
http://dx.doi.org/10.1590/S0103-90162011000600002
Gordon D, Abajian C and Green P (1998). Consed: a graphical tool for sequence finishing. Genome Res. 8: 195-202.
PMid:9521923
Hocquette JF, Lehnert S, Barendse W, Cassar-Malek I, et al. (2007). Recent advances in cattle functional genomics and their application to beef quality. Animal 1: 159-173.
http://dx.doi.org/10.1017/S1751731107658042
PMid:22444219
Kemp CM, Sensky PL, Bardsley RG, Buttery PJ, et al. (2010). Tenderness - an enzymatic view. Meat Sci. 84: 248-256.
http://dx.doi.org/10.1016/j.meatsci.2009.06.008
PMid:20374783
Koohmaraie M (1996). Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci. 43S1: 193-201.
Le Bihan-Duval E, Berri C, Baeza E, Sante V, et al. (2003). Genetic parameters of meat technological quality traits in a grand-parental commercial line of turkey. Genet. Sel. Evol. 35: 623-635.
http://dx.doi.org/10.1186/1297-9686-35-7-623
PMid:14604511 PMCid:2698002
Le Bihan-Duval E, Debut M, Berri CM, Sellier N, et al. (2008). Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genet. 9: 53.
http://dx.doi.org/10.1186/1471-2156-9-53
PMid:18706119 PMCid:2533670
NCBI, National Center for Biotechnology Information (2012). Available at [http://www.ncbi.nlm.nih.gov/]. Accessed March 30, 2012.
Nones K, Ledur MC, Ruy DC, Baron EE, et al. (2006). Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100.
http://dx.doi.org/10.1111/j.1365-2052.2005.01387.x
PMid:16573522
Park GB, Moon SS, Ko YD, Ha JK, et al. (2002). Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. J. Anim. Sci. 80: 129-136.
PMid:11831510
Poussard S, Duvert M, Balcerzak D, Ramassamy S, et al. (1996). Evidence for implication of muscle-specific calpain (p94) in myofibrillar integrity. Cell Growth Differ. 7: 1461-1469.
PMid:8930395
Rosário MF, Ledur MC, Moura ASMT, Coutinho LL, et al. (2009). Genotypic characterization of microsatellite markers in broiler and layer selected chicken lines and their reciprocal F1s. Sci. Agric. 66: 150-158.
http://dx.doi.org/10.1590/S0103-90162009000200002
SAS (2004). SAS/STATUser's Guide. Version 9.1. SAS Institute, North Caroline.
Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, et al. (1989). Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J. Biol. Chem. 264: 20106-20111.
PMid:2555341
Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, et al. (1995). Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci. 73: 1351-1367.
PMid:7665364
Zhang ZR, Liu YP, Jiang X, Du HR, et al. (2008). Study on association of single nucleotide polymorphism of CAPN1 gene with muscle fibre and carcass traits in quality chicken populations. J. Anim. Breed. Genet. 125: 258-264.
http://dx.doi.org/10.1111/j.1439-0388.2008.00723.x
PMid:18727211
Zhang ZR, Liu YP, Yao YG, Jiang XS, et al. (2009). Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3) gene with carcass traits in chickens. BMC Genet. 10: 10.
http://dx.doi.org/10.1186/1471-2156-10-10
PMid:19265533 PMCid:2656522
Zhang ZR, Zhu Q, Yao YG, Jiang XS, et al. (2012). Characterization of the expression profile of calpain-3 (CAPN3) gene in chicken. Mol. Biol. Rep. 39: 3517-3521.
http://dx.doi.org/10.1007/s11033-011-1124-4
PMid:21713405
“Polymorphisms in FGFBP1 and FGFBP2 genes associated with carcass and meat quality traits in chickens”, vol. 12, pp. 208-222, 2013.
, , Aigner A, Butscheid M, Kunkel P, Krause E, et al. (2001). An FGF-binding protein (FGF-BP) exerts its biological function by parallel paracrine stimulation of tumor cell and endothelial cell proliferation through FGF-2 release. Int. J. Cancer 92: 510-517.
http://dx.doi.org/10.1002/1097-0215(20010515)92:4<510::AID-IJC1227>3.0.CO;2-H
Ambo M, Moura AS, Ledur MC, Pinto LF, et al. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet. 40: 200-208.
http://dx.doi.org/10.1111/j.1365-2052.2008.01824.x
PMid:19170675
Ankra-Badu GA, Shriner D, Le Bihan-Duval E, Mignon-Grasteau S, et al. (2010). Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate. BMC Genomics 11: 107.
http://dx.doi.org/10.1186/1471-2164-11-107
PMid:20149241 PMCid:2830984
Anthony NB (1998). A review of genetic practices in poultry: efforts to improve meat quality. J. Muscle Food 9: 25-33.
http://dx.doi.org/10.1111/j.1745-4573.1998.tb00641.x
Barbut S (1997). Occurrence of pale soft exudative meat in mature turkey hens. Br. Poult. Sci. 38: 74-77.
http://dx.doi.org/10.1080/00071669708417943
PMid:9088616
Baron EE, Moura AS, Ledur MC, Pinto LF, et al. (2010). QTL for percentage of carcass and carcass parts in a broiler x layer cross. Anim. Genet. [Ahead of Print].
PMid:20880336
Beer HD, Bittner M, Niklaus G, Munding C, et al. (2005). The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene 24: 5269-5277.
http://dx.doi.org/10.1038/sj.onc.1208560
PMid:15806171
Berri C, Le Bihan-Duval E, Debut M, Sante-Lhoutellier V, et al. (2007). Consequence of muscle hypertrophy on characteristics of Pectoralis major muscle and breast meat quality of broiler chickens. J. Anim. Sci. 85: 2005-2011.
http://dx.doi.org/10.2527/jas.2006-398
PMid:17431054
Dekkers JC (2004). Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci. 82 (E-Suppl): E313-E328.
Dransfield E and Sosnicki AA (1999). Relationship between muscle growth and poultry meat quality. Poult. Sci. 78: 743-746.
PMid:10228972
Ewing B and Green P (1998). Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8: 186-194.
PMid:9521922
Falconer DS and Mackay TFC (2001). Introducción a la Genética Cuantitativa. 4ª ed. Acribia, Zaragoza.
Gaya LG, Ferraz JB, Rezende FM, Mourao GB, et al. (2006). Heritability and genetic correlation estimates for performance and carcass and body composition traits in a male broiler line. Poult. Sci. 85: 837-843.
PMid:16673760
Gaya LG, Mourão GB, Ferraz JBS, Mattos EC, et al. (2011). Estimates of heritability and genetic correlations for meat quality traits in broilers. Sci. Agric. 68: 620-625.
http://dx.doi.org/10.1590/S0103-90162011000600002
Gibby KA, McDonnell K, Schmidt MO and Wellstein A (2009). A distinct role for secreted fibroblast growth factor-binding proteins in development. Proc. Natl. Acad. Sci. U. S. A. 106: 8585-8590.
http://dx.doi.org/10.1073/pnas.0810952106
PMid:19433791 PMCid:2689014
Gordon D, Abajian C and Green P (1998). Consed: a graphical tool for sequence finishing. Genome Res. 8: 195-202.
PMid:9521923
Kastner S, Elias MC, Rivera AJ and Yablonka-Reuveni Z (2000). Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J. Histochem. Cytochem. 48: 1079-1096.
http://dx.doi.org/10.1177/002215540004800805
PMid:10898801
Le Bihan-Duval E, Berri C, Baeza E, Sante V, et al. (2003). Genetic parameters of meat technological quality traits in a grand-parental commercial line of turkey. Genet. Sel. Evol. 35: 623-635.
http://dx.doi.org/10.1186/1297-9686-35-7-623
PMid:14604511 PMCid:2698002
Le Bihan-Duval E, Debut M, Berri CM, Sellier N, et al. (2008). Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genet. 9: 53.
http://dx.doi.org/10.1186/1471-2156-9-53
PMid:18706119 PMCid:2533670
Marie PJ, Debiais F and Hay E (2002). Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol. Histopathol. 17: 877-885.
PMid:12168799
Nassar MK, Goraga ZS and Brockmann GA (2012). Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: II. Muscle weight and carcass composition. Anim. Genet. [Ahead of Print].
Nones K, Ledur MC, Zanella EL, Klein C, et al. (2012). Quantitative trait loci associated with chemical composition of the chicken carcass. Anim. Genet. 43: 570-576.
http://dx.doi.org/10.1111/j.1365-2052.2012.02321.x
PMid:22497237
Park GB, Moon SS, Ko YD, Ha JK, et al. (2002). Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. J. Anim. Sci. 80: 129-136.
PMid:11831510
Rosário MF, Ledur MC, Moura ASAMT, Coutinho LL, et al. (2009). Genotypic characterization of microsatellite markers in broiler and layer selected chicken lines and their reciprocal F1s. Sci. Agric. 66: 150-158.
http://dx.doi.org/10.1590/S0103-90162009000200002
SAS (2004). SAS/STAT User's Guide: Version 9.1. SAS Institute, Cary.
Schmid M, Nanda I, Hoehn H, Schartl M, et al. (2005). Second report on chicken genes and chromosomes. Cytogenet. Genome Res. 109: 415-479.
http://dx.doi.org/10.1159/000084205
PMid:15905640
Stephens M, Smith NJ and Donnelly P (2001). A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68: 978-989.
http://dx.doi.org/10.1086/319501
PMid:11254454 PMCid:1275651
Tassi E, Al-Attar A, Aigner A, Swift MR, et al. (2001). Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J. Biol. Chem. 276: 40247-40253.
PMid:11509569
Voorrips RE (2002). MapChart Software for the graphical presentation of linkage maps and QTLs. J. Heredity 93: 77-78.
http://dx.doi.org/10.1093/jhered/93.1.77
PMid:12011185
Wu DQ, Kan MK, Sato GH, Okamoto T, et al. (1991). Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. J. Biol. Chem. 266: 16778-16785.
PMid:1885605
Yang A, Emmerson DA, Dunnington EA and Siegel PB (1999). Heterosis and developmental stability of body and organ weights at hatch for parental line broiler breeders and specific crosses among them. Poult. Sci. 78: 942-948.
PMid:10404673
“Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle”, vol. 11, pp. 3721-3728, 2012.
,
Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, et al. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol. 34: 105-116.
http://dx.doi.org/10.1186/1297-9686-34-1-105
PMid:11929627 PMCid:2705418
Choudhary V, Kumar P, Bhattacharya TK, Bhushan B, et al. (2005). DNA polymorphism of leptin gene in Bos indicus and Bos taurus cattle. Genet. Mol. Biol. 28: 740-742.
http://dx.doi.org/10.1590/S1415-47572005000500014
Clarke IJ and Henry BA (1999). Leptin and reproduction. Rev. Reprod. 4: 48-55.
http://dx.doi.org/10.1530/ror.0.0040048
PMid:10051102
Eler JP, Ferraz JB, Balieiro JC, Mattos EC, et al. (2006). Genetic correlation between heifer pregnancy and scrotal circumference measured at 15 and 18 months of age in Nellore cattle. Genet. Mol. Res. 5: 569-580.
PMid:17183470
Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. 4th edn. Longman, London.
PMCid:1061158
Faria CU, Terra JP, Yokoo MJ, Magnabosco CU, et al. (2011). Interação genótipo-ambiente na análise genética do peso ao desmame de bovinos Nelore sob enfoque bayesiano. Acta. Sci. Anim. Sci. 33: 213-218.
Ferraz JB, Pinto LF, Meirelles FV, Eler JP, et al. (2009). Association of single nucleotide polymorphisms with carcass traits in Nellore cattle. Genet. Mol. Res. 8: 1360-1366.
http://dx.doi.org/10.4238/vol8-4gmr650
PMid:19937580
Haegeman A, Van ZA and Peelman LJ (2000). New mutation in exon 2 of the bovine leptin gene. Anim. Genet. 31: 79.
http://dx.doi.org/10.1111/j.1365-2052.2000.579-14.x
PMid:10690378
Houseknecht KL, Baile CA, Matteri RL and Spurlock ME (1998). The biology of leptin: a review. J. Anim. Sci. 76: 1405-1420.
PMid:9621947
Lagonigro R, Wiener P, Pilla F, Woolliams JA, et al. (2003). A new mutation in the coding region of the bovine leptin gene associated with feed intake. Anim. Genet. 34: 371-374.
http://dx.doi.org/10.1046/j.1365-2052.2003.01028.x
PMid:14510674
Laureano MMM, Boligon AA, Costa RB, Forni S, et al. (2011). Estimates of heritability and genetic trends for growth and reproduction traits in Nelore cattle. Arq. Bras. Med. Vet. Zootec. 66: 143-152.
http://dx.doi.org/10.1590/S0102-09352011000100022
Liefers SC, Veerkamp RF, te Pas MF, Delavaud C, et al. (2004). A missense mutation in the bovine leptin receptor gene is associated with leptin concentrations during late pregnancy. Anim. Genet. 35: 138-141.
http://dx.doi.org/10.1111/j.1365-2052.2004.01115.x
PMid:15025576
Liefers SC, Veerkamp RF, te Pas MF, Delavaud C, et al. (2005). Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim. Genet. 36: 111-118.
http://dx.doi.org/10.1111/j.1365-2052.2005.01246.x
PMid:15771719
Mácajová M, Lamosova D and Zeman M (2004). Role of leptin in farm animals: a review. J. Vet. Med. A Physiol. Pathol. Clin. Med. 51: 157-166.
http://dx.doi.org/10.1111/j.1439-0442.2004.00619.x
PMid:15265171
Martins GA, Martins Filho R, Lima FAM and Lôbo RNB (2000). Influence of genetic and environment factors on the growing traits of animals from Nellore breed at Maranhão State. R. Bras. Zootec. Zootec. 29: 103-107.
http://dx.doi.org/10.1590/S1516-35982000000100014
Meirelles FV, Rosa AJM, Lôbo RB, Garcia JM, et al. (1999). Is the american Zebu really Bos indicus? Genet. Mol. Biol. 22: 543-546.
http://dx.doi.org/10.1590/S1415-47571999000400013
Nelson DL and Cox MM (2005). Lehningher Principles of Biochemistry. 6th edn. Prentice Hall, New York.
Nkrumah JD, Li C, Basarab JB, Guercio S, et al. (2004). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Can. J. Anim. Sci. 84: 211-219.
http://dx.doi.org/10.4141/A03-033
Nkrumah JD, Li C, Yu J, Hansen C, et al. (2005). Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J. Anim. Sci. 83: 20-28.
PMid:15583038
Olerup O and Zetterquist H (1992). HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practive including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225-235
http://dx.doi.org/10.1111/j.1399-0039.1992.tb01940.x
PMid:1357775
Pedrosa VB, Eler JP, Ferraz JB, Silva JAV, et al. (2010). Parâmetros genéticos do peso adulto e características de desenvolvimento ponderal na raça Nelore. Rev. Bras. Saúde Prod. An. 11: 104-113.
Pereira E, Eler JP and Ferraz JBS (2000). Genetic correlation between scrotal circumference and some reproductive traits in Nellore cattle. Rev. Bras. Zootec. 29: 1676-1683.
http://dx.doi.org/10.1590/S1516-35982000000600012
Pinto LF, Ferraz JB, Pedrosa VB, Eler JP, et al. (2011). Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genet. Mol. Res. 10: 2057-2064.
http://dx.doi.org/10.4238/vol10-3gmr1263
PMid:21968622
Prado CS, Padua JT, Corrêa MPC, Ferraz JBS et al. (2004). Comparação de diferentes métodos de avaliação da área de olho de lombo e cobertura de gordura em bovinos de corte. Ciênc. Anim. Bras. 5: 141-149
SAS Institute Inc. (2004). SAS/STAT 9.1. User's Guide. SAS Publishing, Cary.
Schenkel FS, Miller SP, Ye X, Moore SS, et al. (2005). Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 83: 2009-2020.
PMid:16100055
Silva SL, Leme PR, Putrino SM, Martello LS, et al. (2004). Prediction of backfat at slaughter, by ultrasound, in Nellore and Brangus Young bulls. Rev. Bras. Zootec. 33: 511-517.
http://dx.doi.org/10.1590/S1516-35982004000200030
Souza FR, Mercadante ME, Fonseca LF, Ferreira LM, et al. (2010). Assessment of DGAT1 and LEP gene polymorphisms in three Nelore (Bos indicus) lines selected for growth and their relationship with growth and carcass traits. J. Anim. Sci. 88: 435-441.
http://dx.doi.org/10.2527/jas.2009-2174
PMid:19820053
Tartaglia LA (1997). The leptin receptor. J. Biol. Chem. 272: 6093-6096.
PMid:9102398
Van Melis MH, Oliveira HN, Eler JP, Ferraz JB, et al. (2010). Additive genetic relationship of longevity with fertility and production traits in Nellore cattle based on bivariate models. Genet. Mol. Res. 9: 176-187.
http://dx.doi.org/10.4238/vol9-1gmr710
PMid:20198574
Yokoo MJ, Lobo RB, Araujo FR, Bezerra LA, et al. (2010). Genetic associations between carcass traits measured by real-time ultrasound and scrotal circumference and growth traits in Nelore cattle. J. Anim. Sci. 88: 52-58.
http://dx.doi.org/10.2527/jas.2008-1028
PMid:19820065
Zhang Y, Proenca R, Maffei M, Barone M, et al. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432.
http://dx.doi.org/10.1038/372425a0
PMid:7984236
“Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle”, vol. 10, pp. 2057-2064, 2011.
, AMSA (1995). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Fresh Meat. American Meat Science Association, Chicago.
Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, et al. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet. Sel. Evol. 34: 105-116.
http://dx.doi.org/10.1186/1297-9686-34-1-105
PMCid:2705418
Chambaz A, Scheeder MRL, Kreuzer M and Dufey PA (2003). Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 63: 491-500.
http://dx.doi.org/10.1016/S0309-1740(02)00109-2
Ferraz JB, Pinto LF, Meirelles FV, Eler JP, et al. (2009). Association of single nucleotide polymorphisms with carcass traits in Nellore cattle. Genet. Mol. Res. 8: 1360-1366.
http://dx.doi.org/10.4238/vol8-4gmr650
PMid:19937580
Huff-Lonergan E and Lonergan SM (2005). Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci. 71: 194-204.
http://dx.doi.org/10.1016/j.meatsci.2005.04.022
PMid:22064064
Liefers SC, Veerkamp RF, Te Pas MF, Delavaud C, et al. (2005). Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim. Genet. 36: 111-118.
http://dx.doi.org/10.1111/j.1365-2052.2005.01246.x
PMid:15771719
Mancini RA and Hunt MC (2005). Current research in meat color. Meat Sci. 71: 100-121.
http://dx.doi.org/10.1016/j.meatsci.2005.03.003
PMid:22064056
Pérez-Enciso M and Misztal I (2004). Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20: 2792-2798.
http://dx.doi.org/10.1093/bioinformatics/bth331
PMid:15166025
Pinto LF, Ferraz JB, Meirelles FV, Eler JP, et al. (2010). Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genet. Mol. Res. 9: 1431-1442.
http://dx.doi.org/10.4238/vol9-3gmr881
PMid:20662159
Reardon W, Mullen AM, Sweeney T and Hamill RM (2010). Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine m. longissimus and m. semimembranosus. Meat Sci. 86: 270-275.
http://dx.doi.org/10.1016/j.meatsci.2010.04.013
PMid:20510534
SAS (2004). SAS/STAT User’s Guide: Version 9.1. SAS Institute, Cary.
Viljoen HF, De Kock HL and Webb EC (2002). Consumer acceptability of dark, firm and dry (DFD) and normal pH beef steaks. Meat Sci. 61: 181-185.
http://dx.doi.org/10.1016/S0309-1740(01)00183-8
White SN, Casas E, Wheeler TL, Shackelford SD, et al. (2005). A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83: 2001-2008.
PMid:16100054
“Additive genetic relationship of longevity with fertility and production traits in Nellore cattle based on bivariate models”, vol. 9, pp. 176-187, 2010.
, Albert JH and Chib S (2001). Sequential ordinal modeling with applications to survival data. Biometrics 57: 829-836.
http://dx.doi.org/10.1111/j.0006-341X.2001.00829.x
PMid:11550934
Averill T, Rekaya R and Weigel K (2006). Random regression models for male and female fertility evaluation using longitudinal binary data. J. Dairy Sci. 89: 3681-3689.
http://dx.doi.org/10.3168/jds.S0022-0302(06)72408-0
Bourdon RM and Brinks JS (1986). Scrotal circumference in yearling Hereford bulls: adjustment factors, heritabilities and genetic, environmental and phenotypic relationships with growth traits. J. Anim. Sci. 62: 958-967.
PMid:3710937
Caraviello DZ, Weigel KA, Shook GE and Ruegg PL (2005). Assessment of the impact of somatic cell count on functional longevity in Holstein and Jersey cattle using survival analysis methodology. J. Dairy Sci. 88: 804-811.
http://dx.doi.org/10.3168/jds.S0022-0302(05)72745-4
Cardoso FF, Cardellino RA and Campos LT (2004). (Co) variance components and genetic parameters of post-weaning traits in Angus cattle. R. Bras. Zootec. 33: 313-319.
http://dx.doi.org/10.1590/S1516-35982004000200006
Cox DR (1972). Regression models and life-tables. J. R. Stat. Soc. Ser. B Stat. Methodol. 34: 187-220.
Damgaard LH and Korsgaard IR (2006). A bivariate quantitative genetic model for a linear Gaussian trait and a survival trait. Genet. Sel. Evol. 38: 45-64.
http://dx.doi.org/10.1186/1297-9686-38-1-45
PMid:16451791 PMCid:2689298
de Jong G, Vollema AR, van der Beek S and Harbers A (1999). Breeding value for functional longevity in the Netherlands. Interbull Bull. 21: 68-72.
Doyle SP, Golden BL, Green RD and Brinks JS (2000). Additive genetic parameter estimates for heifer pregnancy and subsequent reproduction in Angus females. J. Anim. Sci. 78: 2091-2098.
PMid:10947093
Ducrocq V (1999). Extension of survival analysis models to discrete measures of longevity. Interbull Bull. 21: 41-48.
Ducrocq V and Casella G (1996). A Bayesian analysis of mixed survival models. Genet. Sel. Evol. 28: 505-529.
http://dx.doi.org/10.1186/1297-9686-28-6-505
PMCid:2708295
Ducrocq V, Quaas RL and Pollak EJ (1988). Length of productive life of dairy cows. 2. Variance component estimation and sire evaluation. J. Dairy Sci. 71: 3071-3079.
http://dx.doi.org/10.3168/jds.S0022-0302(88)79907-5
Eler JP, Silva JA, Ferraz JB, Dias F, et al. (2002). Genetic evaluation of the probability of pregnancy at 14 months for Nellore heifers. J. Anim. Sci. 80: 951-954.
PMid:12002332
Eler JP, Silva JA, Evans JL, Ferraz JB, et al. (2004). Additive genetic relationships between heifer pregnancy and scrotal circumference in Nellore cattle. J. Anim. Sci. 82: 2519-2527.
PMid:15452919
Eler JP, Ferraz JB, Balieiro JC, Mattos EC, et al. (2006). Genetic correlation between heifer pregnancy and scrotal circumference measured at 15 and 18 months of age in Nellore cattle. Genet. Mol. Res. 5: 569-580.
PMid:17183470
Eriksson S, Näsholm A, Johansson K and Philipsson J (2002). Genetic analysis of post-weaning gain of Swedish beef cattle recorded under field conditions and at station performance testing. Livest. Prod. Sci. 76: 91-101.
http://dx.doi.org/10.1016/S0301-6226(02)00007-6
Evans JL, Golden BL, Bourdon RM and Long KL (1999). Additive genetic relationships between heifer pregnancy and scrotal circumference in Hereford cattle. J. Anim. Sci. 77: 2621-2628.
PMid:10521020
Forni S, Federici JF and Albuquerque LG (2007). Genetic trends in Nelore cattle selected for visual scores of conformation, precocity and musculature at weaning. R. Bras. Zootec. 36: 572-577.
http://dx.doi.org/10.1590/S1516-35982007000300008
Gelfand AE and Smith AFM (1990). Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85: 398-409.
http://dx.doi.org/10.1080/01621459.1990.10476213
González-Recio O and Alenda R (2007). Genetic relationship of discrete-time survival with fertility and production in dairy cattle using bivariate models. Genet. Sel. Evol. 39: 391-404.
http://dx.doi.org/10.1186/1297-9686-39-4-391
PMid:17612479 PMCid:2682818
González-Recio O, Chang YM, Gianola D and Weigel KA (2005). Number of inseminations to conception in Holstein cows using censored records and time-dependent covariates. J. Dairy Sci. 88: 3655-3662.
http://dx.doi.org/10.3168/jds.S0022-0302(05)73051-4
Horimoto AR, Ferraz JB, Balieiro JC and Eler JP (2007). Phenotypic and genetic correlations for body structure scores (frame) with productive traits and index for CEIP classification in Nellore beef cattle. Genet. Mol. Res. 6: 188-196.
PMid:17469068
Martínez GE, Koch RM, Cundiff LV, Gregory KE, et al. (2004). Genetic parameters for six measures of length of productive life and three measures of lifetime production by 6 yr after first calving for Hereford cows. J. Anim. Sci. 82: 1912-1918.
PMid:15309936
Martínez-Velázquez G, Gregory KE, Bennett GL and Van Vleck LD (2003). Genetic relationships between scrotal circumference and female reproductive traits. J. Anim. Sci. 81: 395-401.
PMid:12643482
Melton BE (1995). Conception to Consumption: The Economics of Genetic Improvement. In: Proceedings of the Beef Improvement Federation, 27, Research Symposium and Annual Meeting, Sheridan, 40-47.
Moreno C, Sorensen D, García-Cortés LA, Varona L, et al. (1997). On biased inferences about variance components in the binary threshold model. Genet. Sel. Evol. 29: 145-160.
http://dx.doi.org/10.1186/1297-9686-29-2-145
PMCid:2708209
Newman S, Morris CA, Baker RL and Nicoll GB (1992). Genetic improvement of beef cattle in New Zealand: Breeding objectives. Livest. Prod. Sci. 32: 111-130.
http://dx.doi.org/10.1016/S0301-6226(12)80031-5
Nguti R, Burzykowski T, Rowlands J, Renard D, et al. (2005). Joint modelling of repeated measurements and event time: application to performance traits and survival of lambs bred in sub-humid tropics. Genet. Sel. Evol. 37: 175-197.
http://dx.doi.org/10.1186/1297-9686-37-3-175
PMid:16194523 PMCid:2697229
Pereira E, Oliveira HN, Eler JP, Silva JA II V, et al. (2007). Comparison among three approaches for evaluation of sexual precocity in Nellore cattle. Animal 1: 411-418.
http://dx.doi.org/10.1017/S1751731107392732
PMid:22444339
Phocas F, Bloch C, Chapelle P, Bécherel F, et al. (1998). Developing a breeding objective for a French purebred beef cattle selection programme. Livest. Prod. Sci. 57: 49-65.
http://dx.doi.org/10.1016/S0301-6226(98)00157-2
Prentice RL and Gloeckler LA (1978). Regression analysis of grouped survival data with application to breast cancer data. Biometrics 34: 57-67.
http://dx.doi.org/10.2307/2529588
PMid:630037
Reverter A, Golden BL, Bourdon RM and Brinks JS (1994). Method R variance components procedure: application on the simple breeding value model. J. Anim. Sci. 72: 2247-2253.
PMid:8002443
Silva JA II V, Formigoni IB, Eler JP and Ferraz JBS (2006). Genetic relationship among stayability, scrotal circumference and post-weaning weight in Nelore cattle. Livest. Sci. 99: 51-59.
http://dx.doi.org/10.1016/j.livprodsci.2005.05.022
Smith BA, Brinks JS and Richardson GV (1989). Estimation of genetic parameters among reproductive and growth traits in yearling heifers. J. Anim. Sci. 67: 2886-2891.
PMid:2592277
Sorensen DA, Andersen S, Gianola D and Korsgaard I (1995). Bayesian inference in threshold models using Gibbs sampling. Genet. Sel. Evol. 27: 229-249.
http://dx.doi.org/10.1186/1297-9686-27-3-229
PMCid:2708245
Speidel SE, Enns RM and Garrick DJ (2007). Weaning weight inheritance in environments classified by maternal body weight change. J. Anim. Sci. 85: 610-617.
http://dx.doi.org/10.2527/jas.2006-093
PMid:17085734
Tanner MA and Wong WH (1987). The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82: 528-540.
http://dx.doi.org/10.1080/01621459.1987.10478458
Tarrés J, Piedrafita J and Ducrocq V (2006). Validation of an approximate approach to compute genetic correlations between longevity and linear traits. Genet. Sel. Evol. 38: 65-83.
http://dx.doi.org/10.1186/1297-9686-38-1-65
PMid:16451792 PMCid:2689299
Tutz G (1990). Sequential item response models with an ordered response. Br. J. Math. Stat. Psychol. 43: 39-55.
http://dx.doi.org/10.1111/j.2044-8317.1990.tb00925.x
Tutz G (1991). Sequential models in categorical regression. Comput. Stat. Data Anal. 11: 275-295.
http://dx.doi.org/10.1016/0167-9473(91)90086-H
Van Melis MH, Eler JP, Silva JA II V and Ferraz JBS (2003). Estimate of genetic parameters in beef cattle using restricted maximun likelihood and method Â. Rev. Bras. Zootec. 32: 1624-1632.
Van Melis MH, Eler JP, Oliveira HN, Rosa GJ, et al. (2007). Study of stayability in Nellore cows using a threshold model. J. Anim. Sci. 85: 1780-1786.
http://dx.doi.org/10.2527/jas.2005-608
PMid:17371792
Vollema AR and Groen AF (1997). Genetic correlations between longevity and conformation traits in an upgrading dairy cattle population. J. Dairy Sci. 80: 3006-3014.
http://dx.doi.org/10.3168/jds.S0022-0302(97)76267-2
“Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle”, vol. 9, pp. 1431-1442, 2010.
, Barendse W, Harrison BE, Hawken RJ, Ferguson DM, et al. (2007). Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics 176: 2601-2610.
http://dx.doi.org/10.1534/genetics.107.074328
PMid:17603104 PMCid:1950658
Bonilha SFM, Tedeschi LO, Pachker IU, Razook AG, et al. (2008). Evaluation of carcass characteristics of Bos indicus and tropically adapted Bos taurus breeds selected for postweaning weight. J. Anim. Sci. 50: 841-851.
Casas E, White SN, Riley DG, Smith TP, et al. (2005). Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 83: 13-19.
PMid:15583037
Casas E, White SN, Wheeler TL, Shackelford SD, et al. (2006). Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84: 520-525.
PMid:16478943
Cheong HS, Yoon DH, Park BL, Kim LH, et al. (2008). A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Genet. 9: 33.
http://dx.doi.org/10.1186/1471-2156-9-33
PMid:18423040 PMCid:2386817
Corva P, Soria L, Schor A, Villarreal E, et al. (2007). Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genet. Mol. Biol. 30: 1064-1069.
http://dx.doi.org/10.1590/S1415-47572007000600006
Garcia MD, Michal JJ, Gaskins CT, Reeves JJ, et al. (2006). Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Anim. Genet. 37: 304-305.
http://dx.doi.org/10.1111/j.1365-2052.2006.01443.x
PMid:16734705
Koohmaraie M (1996). Biochemical factors regulating the toughening and tenderization process of meat. Meat Sci. 43: 193-201.
http://dx.doi.org/10.1016/0309-1740(96)00065-4
Morris CA, Cullen NG, Hickey SM, Dobbie PM, et al. (2006). Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey x Limousin, Angus and Hereford-cross cattle. Anim. Genet. 37: 411-414.
http://dx.doi.org/10.1111/j.1365-2052.2006.01483.x
PMid:16879360
Page BT, Casas E, Heaton MP, Cullen NG, et al. (2002). Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085.
PMid:12542147
Page BT, Casas E, Quaas RL, Thallman RM, et al. (2004). Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci. 82: 3474-3481.
PMid:15537766
Pérez-Enciso M and Misztal I (2004). Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20: 2792-2798.
http://dx.doi.org/10.1093/bioinformatics/bth331
PMid:15166025
SAS (2004). SAS/STATUser's Guide: version 9.1. SAS Institute, North Caroline, 5136.
Schenkel FS, Miller SP, Jiang Z, Mandell IB, et al. (2006). Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84: 291-299.
PMid:16424255
Smith TPL, Casas E, Rexroad CE III, Kappes SM, et al. (2000). Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J. Anim. Sci. 78: 2589-2594.
PMid:11048924
White SN, Casas E, Wheeler TL, Shackelford SD, et al. (2005). A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83: 2001-2008.
PMid:16100054
“Comparison of different models to estimate genetic parameters for carcass traits in a commercial broiler line”, vol. 9, pp. 908-918, 2010.
, Aggrey SE and Cheng KM (1993). Genetic and posthatch parental influences in growth of pigeon squabs. J. Hered. 84: 184-187.
Agroceres Ross (2004). Manual de Manejo de Frangos Agross. UmDesign, Campinas.
Aho P (2001). The new poultry elite. WATT Poultry 2: 20-24.
Argentão C, Michelan Filho T, Marques JB, Souza EM, et al. (2002). Genetic and phenotypic parameters of growth and carcass traits of a male line of broilers raised in tropical conditions. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, 2002, Montpellier, France, 333-336.
Benyshek LL, Johnson MH, Little DE and Kriese LA (1988). Applications of an animal model in the United States beef cattle industry. J. Dairy Sci. 71 (Suppl 2): 35-53.
http://dx.doi.org/10.1016/S0022-0302(88)79978-6
Bijma P (2006). Estimating maternal genetic effects in livestock. J. Anim. Sci. 84: 800-806.
PMid:16543556
Boldman KG, Kriese LA, van Vleck LD, van Tassel CP, et al. (1995) A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances (DRAFT). USDA/ARS, Lincoln.
Chambers JR (1990). Genetics of Growth and Meat Production in Chickens. In: Poultry Breeding and Genetics (Crawford RD, ed.) Elsevier Science, Amsterdam, 599-643.
Chapuis H, Tixier-Boichard M, Delabrosse Y and Ducrocq V (1996). Multivariate restricted maximum likelihood estimation of genetic parameters for production traits in three selected Turkey strains. Genet. Sel. Evol. 28: 299-317.
http://dx.doi.org/10.1186/1297-9686-28-3-299
PMCid:2708314
Clément V, Bibe B, Verrier E, Elsen JM, et al. (2001). Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genet. Sel. Evol. 33: 369-395.
http://dx.doi.org/10.1186/1297-9686-33-4-369
PMid:11563370 PMCid:2705412
Dobson AJ (2002). An Introduction to Generalized Linear Models. 2nd edn. Chapman & Hall/CRC, Boca Raton.
Etches RJ (1995). Reproduction in Poultry. CAB International, Wallingford.
Falconer DS and Mackay TFC (1996). Introduction to Quantitative Genetics. 4th edn. Longman, Essex.
PMCid:1061158
Flemming JS, Janzen AS and Endo MA (1999). Rendimento de carcaça em linhagens comerciais de frangos de corte. Arch. Vet. Sci. 4: 61-63.
Gaya LG, Nakashima SH, Mourão GB, Mattos EC, et al. (2005). Estimativas de Parâmetros Genéticos e Fenotípicos para Medidas de Ultra-Sonografia de Músculo Peitoral e Características de Carcaça em Linhagem Macho de Frangos. In: Anais da 42ª Reunião Anual da Sociedade Brasileira de Zootecnia, Goiânia.
Gaya LG, Ferraz JB, Rezende FM, Mourao GB, et al. (2006). Heritability and genetic correlation estimates for performance and carcass and body composition traits in a male broiler line. Poult. Sci. 85: 837-843.
PMid:16673760
Gerstmayr S (1992). Impact of the data structure on the reliability of the estimated genetic parameters in an animal model with maternal effects. J. Anim. Breed. Genet. 109: 321-336.
http://dx.doi.org/10.1111/j.1439-0388.1992.tb00412.x
Harms RH (1991). Specific gravity of eggs and eggshell weight from commercial layers and broiler breeders in relation to time of oviposition. Poult. Sci. 70: 1099-1104.
http://dx.doi.org/10.3382/ps.0701099
PMid:1852686
Henderson CR (1984). Applications of Linear Models in Animal Breeding. University of Guelph, Guelph.
Hohenboken WD (1985). Maternal Effects. In: General and Quantitative Genetics (Chapman AB, ed.). Elsevier, Amsterdam, 135-149.
Koerhuis ANM and McKay JC (1996). Restricted maximum likelihood estimation of genetic parameters for egg production traits in relation to juvenile body weight in broiler chickens. Livest. Prod. Sci. 46: 117-127.
http://dx.doi.org/10.1016/0301-6226(96)00018-8
Koerhuis ANM and Thompson R (1997). Models to estimate maternal effects for juvenile body weight in broiler chicken. Genet. Sel. Evol. 29: 225-249.
http://dx.doi.org/10.1186/1297-9686-29-2-225
PMCid:2708214
Koerhuis ANM, McKay JC, Hill WG and Thompson R (1997). A genetic analysis of egg quality traits and their maternal influence on offspring-parental regressions of juvenile body weight performance in broiler chickens. Genet. Sel. Evol. 49: 203-215.
Le Bihan-Duval E, Mignon-Grasteau S, Millet N and Beaumont C (1998). Genetic analysis of a selection experiment on increased body weight and breast muscle weight as well as on limited abdominal fat weight. Br. Poult. Sci. 39: 346-353.
http://dx.doi.org/10.1080/00071669888881
PMid:9693814
Lesson S and Summers JD (2000). Broiler Breeder Production. University Books, Guelph.
Lynch M and Walsh B (1998). Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland.
Meyer K (1992). Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Livest. Prod. Sci. 31: 179-204.
http://dx.doi.org/10.1016/0301-6226(92)90017-X
Meyer K (1997). Estimates of genetic parameters for weaning weight of beef cattle accounting for direct-maternal environmental covariances. Livest. Prod. Sci. 52: 187-199.
http://dx.doi.org/10.1016/S0301-6226(97)00144-9
Norris D and Ngambi JW (2006). Genetic parameter estimates for body weight in local Venda chickens. Trop. Anim. Health Prod. 38: 605-609.
http://dx.doi.org/10.1007/s11250-006-4420-6
PMid:17265777
Pakdel A, Van Arendonk JA, Vereijken AL and Bovenhuis H (2002). Direct and maternal genetic effects for ascites-related traits in broilers. Poult. Sci. 81: 1273-1279.
PMid:12269603
Pita FVC and Albuquerque LG (2001). Comparação de diferentes modelos para avaliação genética de características de desempenho pós-desmama em suínos. Rev. Bras. Zootec. 30: 1720-1727.
http://dx.doi.org/10.1590/S1516-35982001000700009
Pollock DL (1997). Maximizing yield. Poult. Sci 76: 1131-1133.
PMid:9251141
Prado-González EA, Ramírez-Avila L and Segura-Correa JC (2003). Genetic parameters for body weights of Creole chickens from Southeastern Mexico using an animal model. Livest. Res. Rural Devel. 15: 1-6. Availabe at [http:// www.lrrd.org/lrrd15/1/prad151.htm].
Reece WO (2006). Dukes: Fisiologia dos Animais Domésticos. 12nd edn. Guanabara Koogan, Rio de Janeiro.
Robinson DL (1996). Models which might explain negative correlations between direct and maternal genetic effects. Lives. Prod. Sci. 45: 111-112.
http://dx.doi.org/10.1016/0301-6226(96)00002-4
Saatci M, Omed H and Ap Dewit I (2006). Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poult. Sci. 85: 185-190.
PMid:16523612
SAS Institute (2004). User's Guide: Statistics. SAS Institute Inc., Cary.
Willham RL (1980). Problems in estimating maternal effects. Livest. Prod. Sci. 7: 405-418.
http://dx.doi.org/10.1016/0301-6226(80)90080-9
Zerehdaran S, Vereijken AL, Van Arendonk JA and van der Waaijt EH (2004). Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poult. Sci. 83: 521-525.
PMid:15109049
“Genetic parameters for postweaning traits in Braunvieh cattle”, vol. 9, pp. 545-553, 2010.
, Arthur PF, Archer JA, Johnston DJ, Herd RM, et al. (2001). Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 79: 2805-2811.
PMid:11768108
Bennett GL and Gregory KE (1996). Genetic (co)variances among birth weight, 200-day weight, and postweaning gain in composites and parental breeds of beef cattle. J. Anim. Sci. 74: 2598-2611.
PMid:8923174
Bittencourt TCC, Rocha JCMC, Lôbo RB and Bezerra LF (2002). Variance components and breeding values for post weaning growth traits of Nellore cattle, from different statistical models. (Estimação de componentes de (co) variâncias e predição de DEP's para características de crescimento pós-desmama de bovinos da raça Nelore, usando diferentes modelos estatísticos). Arq. Bras. Med. Vet. Zootec. 54: 303-308.
http://dx.doi.org/10.1590/S0102-09352002000300014
Boldman KG, Kriese LA, Van Vleck LD and Kachman SD (1995). A Manual for Use of MTDFREML: a Set of Programs to Obtain Estimates of Variances and Covariances (DRAFT). USDA-ARS, Lincoln.
Cardoso FF, Cardellino RA and Campos LT (2004). (Co)Variance components and genetic parameters of post-weaning traits in Angus cattle. R. Bras. Zootec. 33: 313-319.
http://dx.doi.org/10.1590/S1516-35982004000200006
Corrêa MBB, Dionello NJL and Cardoso FF (2006). Estimation of genetic parameters and (co)variance components for preweaning productive traits in Devon Cattle in Rio Grande do Sul. R. Bras. Zootec. 35: 997-1004.
http://dx.doi.org/10.1590/S1516-35982006000400009
Cucco DC (2008). Estimativa de Parâmetros Genéticos para Características de Crescimento e Perímetro Escrotal na Raça Pardo Suíço Corte. Master's thesis, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga. Available at [http://www.teses.usp.br/teses/disponiveis/74/74131/tde-11032008-090556/publico/5581102.pdf]. Accessed August 1, 2009.
Cucco DC, Ferraz JB, Pinto LF, Eler JP, et al. (2009). Genetic parameters for pre-weaning traits in Braunvieh cattle. Genet. Mol. Res. 8: 291-298.
http://dx.doi.org/10.4238/vol8-1gmr572
PMid:19291878
Eler JP, Ferraz JBS and Silva PR (1996). Parâmetros genéticos para peso, avaliação visual e circunferência escrotal na raça Nelore, estimados por modelo animal. Arq. Bras. Med. Vet. Zootec. 48: 203-213.
Koots KR, Gibson JP, Smith C and Wilton JW (1994). Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Anim. Breed. Abst. 62: 309-338.
Lôbo RNB, Madalena FE and Vieira AR (2000). Avaliação genética de animais jovens, touros e matrizes: Sumário do PMGRN. Anim. Breed. Abst. 68: 433-462.
Marques LFA, Pereira JCC, Oliveira HN, Pereira CS, et al. (1999). Variance components and genetic parameters estimates for growth traits of Simmental cattle in Brazil. Arq. Bras. Med. Vet. Zootec. 51: 363-370.
http://dx.doi.org/10.1590/S0102-09351999000400013
Mascioli AS, El Faro L, Alencar MM, Fries LA, et al. (2000). Genetic and phenotypic parameters and principal components analyses for body weight gains in Canchim cattle. Rev. Bras. Zootec. 29: 1654-1660.
http://dx.doi.org/10.1590/S1516-35982000000600009
Meyer K (1992). Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Liv. Prod. Sci. 31: 179-204.
http://dx.doi.org/10.1016/0301-6226(92)90017-X
Meyer K, Carrick MJ and Donnelly BJ (1994). Genetic parameters for milk production of Australian beef cows and weaning weight of their calves. J. Anim. Sci. 72: 1155-1165.
PMid:8056659
Paneto JCC, Lemos DC, Bezerra LAF, Martins Filho R, et al. (2002). Study of quantitative growth traits from 120 to 550 days of age in Nellore Cattle. R. Bras. Zootec. 31: 668-674.
http://dx.doi.org/10.1590/S1516-35982002000300017
Robinson OW (1981). The influence of maternal effects on the efficiency of selection: A review. Liv. Prod. Sci. 8: 121-137.
http://dx.doi.org/10.1016/0301-6226(81)90016-6
Sarmento JLR, Pimenta Filho EC, Ribeiro MN and Martins Filho R (2003). Genetic and environmental effects on Nellore Cattle growth in Paraíba. Rev. Bras. Zootec. 32: 325-330.
http://dx.doi.org/10.1590/S1516-35982003000200010
Siqueira RLPG, Oliveira JA, Lôbo RB, Bezerra LAF, et al. (2003). Additive genetic variability analysis in the growth characteristics of Nellore breed. Rev. Bras. Zootec. 32: 99-105.
http://dx.doi.org/10.1590/S1516-35982003000100013
Willham RL (1972). The role of maternal effects in animal breeding. 3. Biometrical aspects of maternal effects in animals. J. Anim. Sci. 35: 1288-1293.
PMid:4567216
Wilson DE, Berger PJ and Willham RL (1986). Estimates of beef growth trait variances and heritabilities determined from field records. J. Anim. Sci. 63: 386-394.
PMid:3759675
“Association of single nucleotide polymorphisms with carcass traits in Nellore cattle”, vol. 8, pp. 1360-1366, 2009.
, “Estimates of genetic trend for carcass traits in a commercial broiler line”, vol. 8, pp. 97-104, 2009.
, “Genetic parameters for pre-weaning traits in Braunvieh cattle”, vol. 8, pp. 291-298, 2009.
, “POPREP: a generic report for population management”, vol. 8, pp. 1158-1178, 2009.
, “Bos indicus or Bos taurus mitochondrial DNA - comparison of productive and reproductive breeding values in a Guzerat dairy herd”, vol. 7, pp. 592-602, 2008.
, “Effects of polymorphisms of LHR and FSHR genes on sexual precocity in a Bos taurus x Bos indicusbeef composite population”, vol. 7, pp. 243-251, 2008.
, “Genetic analysis of average annual productivity of Nellore breeding cows (COWPROD)”, vol. 7, pp. 234-242, 2008.
, “Genetic parameters for productive life traits and reproductive efficiency traits at 6 years in Nellore cattle”, vol. 7, pp. 1312-1318, 2008.
, “Genetic trend estimates of meat quality traits in a male broiler line”, vol. 7, pp. 749-761, 2008.
, “Non-additive genetic effects on weights and performance of a Brazilian Bos taurus x Bos indicus beef composite”, vol. 7, pp. 1156-1163, 2008.
, “Genetic parameters for growth traits of a Brazilian Bos taurus x Bos indicus beef composite”, vol. 6, pp. 1190-1200, 2007.
, “Genetic trends of absolute and relative heartweight in a male broiler line”, vol. 6, pp. 1091-1096, 2007.
, , ,