Publications

Found 5 results
Filters: Author is O.F. Khabour  [Clear All Filters]
2013
O. F. Khabour, Alzoubi, K. H., Al-Azzam, S. I., and Mhaidat, N. M., Frequency of MDR1 single nucleotide polymorphisms in a Jordanian population, including a novel variant, vol. 12, pp. 801-808, 2013.
Cascorbi I (2011). P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb. Exp. Pharmacol. 201: 261-283. http://dx.doi.org/10.1007/978-3-642-14541-4_6 PMid:21103972   Chelule PK, Gordon M, Palanee T, Page T, et al. (2003). MDR1 and CYP3A4 polymorphisms among African, Indian, and white populations in KwaZulu-Natal, South Africa. Clin. Pharmacol. Ther. 74: 195-196. http://dx.doi.org/10.1016/S0009-9236(03)00151-6   Chen J, Chen L, Mao N and Liu Y (2011). Association of the MDR1 3435 polymorphism in patients with refractory rheumatoid arthritis in a Chinese population. Rheumatol. Int. 32: 3127-3130. http://dx.doi.org/10.1007/s00296-011-2088-3 PMid:21947347   D'Andrea G, D'Ambrosio R and Margaglione M (2008). Oral anticoagulants: Pharmacogenetics Relationship between genetic and non-genetic factors. Blood Rev. 22: 127-140. PMid:18234403   Fojo A, Lebo R, Shimizu N, Chin JE, et al. (1986). Localization of multidrug resistance-associated DNA sequences to human chromosome 7. Somat. Cell Mol. Genet. 12: 415-420. http://dx.doi.org/10.1007/BF01570737 PMid:3016920   Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmoller J, et al. (2003). Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur. J. Clin. Pharmacol. 59: 303-312. http://dx.doi.org/10.1007/s00228-003-0606-2 PMid:12879168   Gumus-Akay G, Rustemoglu A, Karadag A and Sunguroglu A (2008). Genotype and allele frequencies of MDR1 gene C1236T polymorphism in a Turkish population. Genet. Mol. Res. 7: 1193-1199. http://dx.doi.org/10.4238/vol7-4gmr496 PMid:19048498   Hattori H, Suminoe A, Wada M, Koga Y, et al. (2007). Regulatory polymorphisms of multidrug resistance 1 (MDR1) gene are associated with the development of childhood acute lymphoblastic leukemia. Leuk. Res. 31: 1633-1640. http://dx.doi.org/10.1016/j.leukres.2007.04.009 PMid:17568669   Hawkins GA and Peters SP (2008). Pharmacogenetics of asthma. Methods Mol. Biol. 448: 359-378. http://dx.doi.org/10.1007/978-1-59745-205-2_11 PMid:18370237   He T, Mo A, Zhang K and Liu L (2011). ABCB1/MDR1 polymorphism and colorectal cancer risk: a meta-analysis of case-control studies. Colorectal Dis. [Epub ahead of print]. http://dx.doi.org/10.1111/j.1463-1318.2011.02919.x   Higgins CF, Callaghan R, Linton KJ, Rosenberg MF, et al. (1997). Structure of the multidrug resistance P-glycoprotein. Semin. Cancer Biol. 8: 135-142. http://dx.doi.org/10.1006/scbi.1997.0067 PMid:9441943   Huebner C, Browning BL, Petermann I, Han DY, et al. (2009). Genetic analysis of MDR1 and inflammatory bowel disease reveals protective effect of heterozygous variants for ulcerative colitis. Inflamm. Bowel. Dis. 15: 1784-1793. http://dx.doi.org/10.1002/ibd.21019 PMid:19685447   Kadiev E, Patel V, Rad P, Thankachan L, et al. (2008). Role of pharmacogenetics in variable response to drugs: focus on opioids. Expert. Opin. Drug Metab. Toxicol. 4: 77-91. http://dx.doi.org/10.1517/17425255.4.1.77 PMid:18370860   Kasuya K, Tsuchida A, Nagakawa Y, Suzuki Y, et al. (2012). Prediction of a side effect and efficacy of adjuvant chemotherapy with gemcitabine for post operative patient of pancreatic cancer by a genetic polymorphism analysis. Hepatogastroenterology 59: 1609-1613. PMid:22155850   Katz DA and Bhathena A (2009). Overview of pharmacogenetics. Curr. Protoc. Hum. Genet. Chapter 9: Unit.   Khabour OF, Abdelhalim ES and Abu-Wardeh A (2009). Association between SOD2 T-9C and MTHFR C677T polymorphisms and longevity: a study in Jordanian population. BMC Geriatr. 9: 57. http://dx.doi.org/10.1186/1471-2318-9-57 PMid:20003469 PMCid:2801492   Kim RB, Leake BF, Choo EF, Dresser GK, et al. (2001). Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther. 70: 189-199. http://dx.doi.org/10.1067/mcp.2001.117412 PMid:11503014   Komoto C, Nakamura T, Sakaeda T, Kroetz DL, et al. (2006). MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer. Drug Metab. Pharmacokinet. 21: 126-132. http://dx.doi.org/10.2133/dmpk.21.126 PMid:16702732   Kuypers DR, de Jonge H, Naesens M and Vanrenterghem Y (2008). Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenet. Genomics 18: 861-868. http://dx.doi.org/10.1097/FPC.0b013e328307c26e PMid:18704002   Lewis DR, Miller ND, Splitt BL, Wu G, et al. (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19: 1838-1850. http://dx.doi.org/10.1105/tpc.107.051599 PMid:17557805 PMCid:1955737   Li Y, Yan PW, Huang XE and Li CG (2011). MDR1 gene C3435T polymorphism is associated with clinical outcomes in gastric cancer patients treated with postoperative adjuvant chemotherapy. Asian Pac. J. Cancer Prev. 12: 2405-2409. PMid:22296392   Li Y, Hu X, Cai B, Chen J, et al. (2012). Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transpl. Immunol. 27: 12-18. http://dx.doi.org/10.1016/j.trim.2012.03.006 PMid:22504573   Mhaidat NM, Alshogran OY, Khabour OF, Alzoubi KH, et al. (2011). Multi-drug resistance 1 genetic polymorphism and prediction of chemotherapy response in Hodgkin's Lymphoma. J. Exp. Clin. Cancer Res. 30: 68. http://dx.doi.org/10.1186/1756-9966-30-68 PMid:21762523 PMCid:3154152   Milojkovic M, Stojnev S, Jovanovic I, Ljubisavljevic S, et al. (2011). Frequency of the C1236T, G2677T/A and C3435T MDR1 gene polymorphisms in the Serbian population. Pharmacol. Rep. 63: 808-814. PMid:21857092   Ni LN, Li JY, Miao KR, Qiao C, et al. (2011). Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med. Oncol. 28: 265-269. http://dx.doi.org/10.1007/s12032-010-9456-9 PMid:20204543   Pan JH, Han JX, Wu JM, Huang HN, et al. (2009). MDR1 single nucleotide polymorphism G2677T/A and haplotype are correlated with response to docetaxel-cisplatin chemotherapy in patients with non-small-cell lung cancer. Respiration 78: 49-55. http://dx.doi.org/10.1159/000158454 PMid:18812689   Ponnala S, Chaudhari JR, Jaleel MA, Bhiladvala D, et al. (2012). Role of MDR1 C3435T and GABRG2 C588T gene polymorphisms in seizure occurrence and MDR1 effect on anti-epileptic drug (phenytoin) absorption. Genet. Test. Mol. Biomarkers 16: 550-557. http://dx.doi.org/10.1089/gtmb.2011.0225 PMid:22239287   Potocnik U, Glavac D and Dean M (2008). Common germline MDR1/ABCB1 functional polymorphisms and haplotypes modify susceptibility to colorectal cancers with high microsatellite instability. Cancer Genet. Cytogenet. 183: 28-34. http://dx.doi.org/10.1016/j.cancergencyto.2008.01.023 PMid:18474294   Qian X, Cao S, Yang G, Dong J, et al. (2012). Variant genotypes of MDR1 C3435T increase the risk of leukemia: evidence from 10 case-control studies. Leuk. Lymphoma 53: 1183-1187. http://dx.doi.org/10.3109/10428194.2011.641179 PMid:22088099   Roses AD (2008). Pharmacogenetics in drug discovery and development: a translational perspective. Nat. Rev. Drug Discov. 7: 807-817. http://dx.doi.org/10.1038/nrd2593 PMid:18806753   Sipeky C, Csongei V, Jaromi L, Safrany E, et al. (2011). Genetic variability and haplotype profile of MDR1 (ABCB1) in Roma and Hungarian population samples with a review of the literature. Drug Metab. Pharmacokinet. 26: 206-215. http://dx.doi.org/10.2133/dmpk.DMPK-10-SC-068 PMid:21178299   Turgut S, Turgut G and Atalay EO (2006). Genotype and allele frequency of human multidrug resistance (MDR1) gene C3435T polymorphism in Denizli province of Turkey. Mol. Biol. Rep. 33: 295-300. http://dx.doi.org/10.1007/s11033-006-9022-x PMid:17080296   van Schaik RH (2008). CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updat. 11: 77-98. http://dx.doi.org/10.1016/j.drup.2008.03.002 PMid:18486526   Vella A and Camilleri M (2008). Pharmacogenetics: potential role in the treatment of diabetes and obesity. Expert. Opin. Pharmacother. 9: 1109-1119. http://dx.doi.org/10.1517/14656566.9.7.1109 PMid:18422469   Wang Y, Wang C, Li J, Wang X, et al. (2009). Effect of genetic polymorphisms of CYP3A5 and MDR1 on cyclosporine concentration during the early stage after renal transplantation in Chinese patients co-treated with diltiazem. Eur. J. Clin. Pharmacol. 65: 239-247. http://dx.doi.org/10.1007/s00228-008-0577-4 PMid:18936931   Wang Y, Chen Q, Jin S, Deng W, et al. (2012). Up-regulation of P-glycoprotein is involved in the increased paclitaxel resistance in human esophageal cancer radioresistant cells. Scand. J. Gastroenterol. 47: 802-808. http://dx.doi.org/10.3109/00365521.2012.683042 PMid:22545578   Yan PW, Huang XE, Yan F, Xu L, et al. (2011). Influence of MDR1 gene codon 3435 polymorphisms on outcome of platinum-based chemotherapy for advanced non small cell lung cancer. Asian Pac. J. Cancer Prev. 12: 2291-2294. PMid:22296372   Yu X, Xie H, Wei B, Zhang M, et al. (2011). Association of MDR1 gene SNPs and haplotypes with the tacrolimus dose requirements in Han Chinese liver transplant recipients. PLoS One 6: e25933. http://dx.doi.org/10.1371/journal.pone.0025933 PMid:22110582 PMCid:3215699   Zhang Y, Jiang XH, Hu YQ, Li ZR, et al. (2008). MDR1 genotypes do not influence the absorption of a single oral dose of 600 mg valacyclovir in healthy Chinese Han ethnic males. Br. J. Clin. Pharmacol. 66: 247-254. http://dx.doi.org/10.1111/j.1365-2125.2008.03189.x PMid:18460034 PMCid:2492918
2010
O. F. Khabour, Mesmar, F. S., Al-Tamimi, F., Al-Batayneh, O. B., and Owais, A. I., Missense mutation of the EDA gene in a Jordanian family with X-linked hypohidrotic ectodermal dysplasia: phenotypic appearance and speech problems, vol. 9, pp. 941-948, 2010.
Bayes M, Hartung AJ, Ezer S, Pispa J, et al. (1998). The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats. Hum. Mol. Genet. 7: 1661- 1669. http://dx.doi.org/10.1093/hmg/7.11.1661 PMid:9736768   Chao SC, Chung CH, Yang CC, Yang MH, et al. (2003). Mutation analysis of X-linked hypohidrotic ectodermal dysplasia in a Taiwanese family. J. Formos. Med. Assoc. 102: 412-417. PMid:12923595   Chassaing N, Bourthoumieu S, Cossee M, Calvas P, et al. (2006). Mutations in EDAR account for one-quarter of non- ED1-related hypohidrotic ectodermal dysplasia. Hum. Mutat. 27: 255-259. http://dx.doi.org/10.1002/humu.20295 PMid:16435307   Cui CY and Schlessinger D (2006). EDA signaling and skin appendage development. Cell Cycle 5: 2477-2483. http://dx.doi.org/10.4161/cc.5.21.3403 PMid:17102627 PMCid:2860309   Cui CY, Kunisada M, Esibizione D, Douglass EG, et al. (2009). Analysis of the temporal requirement for EDA in hair and sweat gland development. J. Invest. Dermatol. 129: 984-993. http://dx.doi.org/10.1038/jid.2008.318 PMid:18923450   Dhanrajani PJ and Jiffry AO (1998). Management of ectodermal dysplasia: a literature review. Dent. Update 25: 73-75. PMid:9791211   Ezer S, Bayes M, Elomaa O, Schlessinger D, et al. (1999). Ectodysplasin is a collagenous trimeric type II membrane protein with a tumor necrosis factor-like domain and co-localizes with cytoskeletal structures at lateral and apical surfaces of cells. Hum. Mol. Genet. 8: 2079-2086. http://dx.doi.org/10.1093/hmg/8.11.2079 PMid:10484778   Fan H, Ye X, Shi L, Yin W, et al. (2008). Mutations in the EDA gene are responsible for X-linked hypohidrotic ectodermal dysplasia and hypodontia in Chinese kindreds. Eur. J. Oral Sci. 116: 412-417. http://dx.doi.org/10.1111/j.1600-0722.2008.00555.x PMid:18821982   Ferguson BM, Thomas NS, Munoz F, Morgan D, et al. (1998). Scarcity of mutations detected in families with X linked hypohidrotic ectodermal dysplasia: diagnostic implications. J. Med. Genet. 35: 112-115. http://dx.doi.org/10.1136/jmg.35.2.112 PMid:9507389 PMCid:1051213   Headon DJ, Emmal SA, Ferguson BM, Tucker AS, et al. (2001). Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 414: 913-916. http://dx.doi.org/10.1038/414913a PMid:11780064   Huang C, Yang Q, Ke T, Wang H, et al. (2006). A novel de novo frame-shift mutation of the EDA gene in a Chinese Han family with hypohidrotic ectodermal dysplasia. J. Hum. Genet. 51: 1133-1137. http://dx.doi.org/10.1007/s10038-006-0071-8 PMid:17066260   Kere J, Srivastava AK, Montonen O, Zonana J, et al. (1996). X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 13: 409-416. http://dx.doi.org/10.1038/ng0895-409 PMid:8696334   Kupietzky A and Houpt M (1995). Hypohidrotic ectodermal dysplasia: characteristics and treatment. Quintessence Int. 26: 285-291. PMid:7568749   Lamartine J (2003). Towards a new classification of ectodermal dysplasias. Clin. Exp. Dermatol. 28: 351-355. http://dx.doi.org/10.1046/j.1365-2230.2003.01319.x PMid:12823289   Lin TK, Huang CY, Lin MH and Chao SC (2004). A novel 7-bp deletion mutation in a Taiwanese family with X-linked hypohidrotic ectodermal dysplasia. Clin. Exp. Dermatol. 29: 536-538. http://dx.doi.org/10.1111/j.1365-2230.2004.01547.x PMid:15347342   Monreal AW, Zonana J and Ferguson B (1998). Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. Am. J. Hum. Genet. 63: 380-389. http://dx.doi.org/10.1086/301984 PMid:9683615 PMCid:1377324   Na GY, Kim DW, Lee SJ, Chung SL, et al. (2004). Mutation in the ED1 gene, Ala349Thr, in a Korean patient with X-linked hypohidrotic ectodermal dysplasia developing de novo. Pediatr. Dermatol. 21: 568-572. http://dx.doi.org/10.1111/j.0736-8046.2004.21510.x PMid:15461765   Paakkonen K, Cambiaghi S, Novelli G, Ouzts LV, et al. (2001). The mutation spectrum of the EDA gene in X-linked anhidrotic ectodermal dysplasia. Hum. Mutat. 17: 349. http://dx.doi.org/10.1002/humu.33   Park JW, Hwang JY, Lee SY, Lee JS, et al. (1999). A case of hypohidrotic ectodermal dysplasia. J. Dermatol. 26: 44-47. PMid:10063212   Priolo M and Lagana C (2001). Ectodermal dysplasias: a new clinical-genetic classification. J. Med. Genet. 38: 579-585. http://dx.doi.org/10.1136/jmg.38.9.579 PMid:11546825 PMCid:1734928   Schneider P, Street SL, Gaide O, Hertig S, et al. (2001). Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. J. Biol. Chem. 276: 18819-18827. http://dx.doi.org/10.1074/jbc.M101280200 PMid:11279189   Sekiguchi H, Wang XJ, Minaguchi K and Yakushiji M (2005). A point mutation of the ED1 gene in a Japanese family with X-linked hypohidrotic ectodermal dysplasia. Int. J. Paediatr. Dent. 15: 73-77. http://dx.doi.org/10.1111/j.1365-263X.2005.00573.x PMid:15663448   Sharma PS, Ludwig RJ, Pruhs RJ and Sharma A (1978). Articulation implications in a case of anhidrotic ectodermal dysplasia and partial anodontia. ASDC J. Dent. Child 45: 385-391. PMid:279567   Shimomura Y, Sato N, Miyashita A, Hashimoto T, et al. (2004). A rare case of hypohidrotic ectodermal dysplasia caused by compound heterozygous mutations in the EDAR gene. J. Invest. Dermatol. 123: 649-655. http://dx.doi.org/10.1111/j.0022-202X.2004.23405.x PMid:15373768   Tao R, Jin B, Guo SZ, Qing W, et al. (2006). A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia. J. Hum. Genet. 51: 498-502. http://dx.doi.org/10.1007/s10038-006-0389-2 PMid:16583127   Tariq M, Wasif N, Ayub M and Ahmad W (2007). A novel 4-bp insertion mutation in EDA1 gene in a Pakistani family with X-linked hypohidrotic ectodermal dysplasia. Eur. J. Dermatol. 17: 209-212. PMid:17478381   Vincent MC, Biancalana V, Ginisty D, Mandel JL, et al. (2001). Mutational spectrum of the ED1 gene in X-linked hypohidrotic ectodermal dysplasia. Eur. J. Hum. Genet. 9: 355-363. http://dx.doi.org/10.1038/sj.ejhg.5200635 PMid:11378824   Vinolo E, Sebban H, Chaffotte A, Israel A, et al. (2006). A point mutation in NEMO associated with anhidrotic ectodermal dysplasia with immunodeficiency pathology results in destabilization of the oligomer and reduces lipopolysaccharide-and tumor necrosis factor-mediated NF-kappa B activation. J. Biol. Chem. 281: 6334-6348. http://dx.doi.org/10.1074/jbc.M510118200 PMid:16379012   Wisniewski SA, Kobielak A, Trzeciak WH and Kobielak K (2002). Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin A and its two receptors. J. Appl. Genet. 43: 97-107. PMid:12084975   Yan M, Wang LC, Hymowitz SG, Schilbach S, et al. (2000). Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290: 523-527. http://dx.doi.org/10.1126/science.290.5491.523 PMid:11039935   Yavuz I, Baskan Z, Ulku R, Dulgergil TC, et al. (2006). Ectodermal dysplasia: Retrospective study of fifteen cases. Arch. Med. Res. 37: 403-409. http://dx.doi.org/10.1016/j.arcmed.2005.06.016 PMid:16513494   Yavuz I, Kiralp S and Baskan Z (2008). Hypohidrotic ectodermal dysplasia: a case report. Quintessence Int. 39: 81-86. PMid:18551221   Zonana J (1993). Hypohidrotic (anhidrotic) ectodermal dysplasia: molecular genetic research and its clinical applications. Semin. Dermatol. 12: 241-246. PMid:8217562