Publications

Found 2 results
Filters: Author is M. Hassine  [Clear All Filters]
2010
I. Jguirim-Souissi, Jelassi, A., Hrira, Y., Najah, M., Slimani, A., Addad, F., Hassine, M., Hamda, K. B., Maatouk, F., Rouis, M., and Slimane, M. N., +294T/C polymorphism in the PPAR-δ gene is associated with risk of coronary artery disease in normolipidemic Tunisians, vol. 9, pp. 1326-1333, 2010.
Aberle J, Hopfer I, Beil FU and Seedorf U (2006). Association of the T+294C polymorphism in PPAR delta with low HDL cholesterol and coronary heart disease risk in women. Int. J. Med. Sci. 3: 108-111. http://dx.doi.org/10.7150/ijms.3.108 PMid:16906219 PMCid:1525216   Barish GD, Atkins AR, Downes M, Olson P, et al. (2008). PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc. Natl. Acad. Sci. U. S. A. 105: 4271-4276. http://dx.doi.org/10.1073/pnas.0711875105 PMid:18337509 PMCid:2393796   Blaschke F, Takaya Y, Caglayan E and Law RE (2006). Obesity, peroxisome proliferators-activated receptor, and atherosclerosis in type 2 diabetes. Arteriosc. Thromb. Vasc. Biol. 26: 28-40. http://dx.doi.org/10.1161/01.ATV.0000191663.12164.77 PMid:16239592   Cardon LR and Palmer LJ (2003). Population stratification and spurious allelic association. Lancet 361: 598-604. http://dx.doi.org/10.1016/S0140-6736(03)12520-2   Chen S, Tsybouleva N, Ballantyne CM and Gotto AM Jr (2004). Effects of PPAR-α, γ and δ haplotypes on plasma levels of lipids, severity and progression of coronary atherosclerosis and response to statin therapy in the lipoprotein coronary atherosclerosis study. Pharmacogenetics 4: 61-71. http://dx.doi.org/10.1097/00008571-200401000-00007   Colhoun HM, McKeigue PM and Davey SG (2003). Problems of reporting genetic associations with complex outcomes. Lancet 361: 865-872. http://dx.doi.org/10.1016/S0140-6736(03)12715-8   Dressel U, Allen TL, Pippal JB, Rohde PR, et al. (2003). The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17: 2477-2493. http://dx.doi.org/10.1210/me.2003-0151 PMid:14525954   Gouni-Berthold I, Giannakidou E, Müller-Wieland D, Faust M, et al. (2005). Peroxisome proliferator-activated receptor-gamma2 Pro12Ala and endothelial nitric oxide synthase-4a/b gene polymorphisms are not associated with hypertension in diabetes mellitus type 2. J. Hypertens. 23: 301-308. http://dx.doi.org/10.1097/00004872-200502000-00012 PMid:15662218   Kim HJ, Kim MY, Jin H, Kim HJ, et al. (2009). Peroxisome proliferator-activated receptor {delta} regulates extracellular matrix and apoptosis of vascular smooth muscle cells through the activation of transforming growth factor-{beta}1/ Smad3. Circ. Res. 105: 16-24. http://dx.doi.org/10.1161/CIRCRESAHA.108.189159 PMid:19461048   Lee CH, Chawla A, Urbiztondo N, Liao D, et al. (2003). Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302: 453-457. http://dx.doi.org/10.1126/science.1087344 PMid:12970571   Leibowitz MD, Fievet C, Hennuyer N, Peinado-Onsurbe J, et al. (2000). Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett. 473: 333-336. http://dx.doi.org/10.1016/S0014-5793(00)01554-4   Li AC, Binder CJ, Gutierrez A, Brown KK, et al. (2004). Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J. Clin. Invest. 114: 1564-1576. PMid:15578089 PMCid:529277   Liou JY, Lee S, Ghelani D, Matijevic-Aleksic N, et al. (2006). Protection of endothelial survival by peroxisome proliferator-activated receptor-delta mediated 14-3-3 upregulation. Arterioscler. Thromb. Vasc. Biol. 26: 1481-1487. http://dx.doi.org/10.1161/01.ATV.0000223875.14120.93 PMid:16645156   Miller SA, Dykes DD and Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 PMid:3344216 PMCid:334765   Piqueras L, Reynolds AR, Hodivala-Dilke KM, Alfranca A, et al. (2007). Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27: 63-69. http://dx.doi.org/10.1161/01.ATV.0000250972.83623.61 PMid:17068288   Rival Y, Beneteau N, Taillandier T, Pezet M, et al. (2002). PPARalpha and PPARdelta activators inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of VCAM-1 in EAhy926 endothelial cells. Eur. J. Pharmacol. 435: 143-151. http://dx.doi.org/10.1016/S0014-2999(01)01589-8   Seedorf U and Aberle J (2007). Emerging roles of PPARdelta in metabolism. Biochim. Biophys. Acta 1771: 1125-1131. http://dx.doi.org/10.1016/j.bbalip.2007.04.017 PMid:17588807   Skogsberg J, Kannisto K, Cassel TN, Hamsten A, et al. (2003a). Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler. Thromb. Vasc. Biol. 23: 637-643. http://dx.doi.org/10.1161/01.ATV.0000064383.88696.24 PMid:12615676   Skogsberg J, McMahon AD, Karpe F, Hamsten A, et al. (2003b). Peroxisome proliferator activated receptor delta genotype in relation to cardiovascular risk factors and risk of coronary heart disease in hypercholesterolaemic men. J. Intern. Med. 254: 597-604. http://dx.doi.org/10.1111/j.1365-2796.2003.01236.x PMid:14641801   Tan NS, Michalik L, Noy N, Yasmin R, et al. (2001). Critical roles of PPAR beta/delta in keratinocyte response to inflammation. Genes Dev. 15: 3263-3277. http://dx.doi.org/10.1101/gad.207501 PMid:11751632 PMCid:312855   Tan NS, Michalik L, Di-Poi N, Desvergne B, et al. (2004). Critical roles of the nuclear receptor PPARbeta (peroxisome-proliferator-activated receptor beta) in skin wound healing. Biochem. Soc. Trans. 32: 97-102. http://dx.doi.org/10.1042/BST0320097 PMid:14748722   Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, et al. (2003). PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc. Natl. Acad. Sci. U. S. A. 100: 6712-6717. http://dx.doi.org/10.1073/pnas.1031789100 PMid:12740443 PMCid:164512
R. Lakhdar, Denden, S., Knani, J., Leban, N., Daimi, H., Hassine, M., Lefranc, G., Ben Chibani, J., and A. Khelil, H., Relationship between glutathione S-transferase P1 polymorphisms and chronic obstructive pulmonary disease in a Tunisian population, vol. 9, pp. 897-907, 2010.
Board PG, Webb GC and Coggan M (1989). Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann. Hum. Genet. 53: 205-213. http://dx.doi.org/10.1111/j.1469-1809.1989.tb01786.x PMid:2596826   Calikoglu M, Tamer L, Ates AN, Karakas S, et al. (2006). The association between polymorphic genotypes of glutathione S-transferases and COPD in the Turkish population. Biochem. Genet. 44: 307-319. http://dx.doi.org/10.1007/s10528-006-9031-4 PMid:16977512   Cantlay AM, Smith CA, Wallace WA, Yap PL, et al. (1994). Heterogeneous expression and polymorphic genotype of glutathione S-transferases in human lung. Thorax 49: 1010-1014. http://dx.doi.org/10.1136/thx.49.10.1010 PMid:7974294 PMCid:475239   Chan-Yeung M, Ho SP, Cheung AH, So LK, et al. (2007). Polymorphisms of glutathione S-transferase genes and functional activity in smokers with or without COPD. Int. J. Tuberc. Lung Dis. 11: 508-514. PMid:17439673   Cheng SL, Yu CJ, Chen CJ and Yang PC (2004). Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur. Respir. J. 23: 818-824. http://dx.doi.org/10.1183/09031936.04.00104904 PMid:15218992   Dsavis LG, Dibner MD and Battey JF (1986). Basic Methods in Molecular Biology. Elsevier, New York, 44-87. http://dx.doi.org/10.1016/B978-0-444-01082-7.50019-9   Eaton DL and Bammler TK (1999). Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 49: 156-164. http://dx.doi.org/10.1093/toxsci/49.2.156 PMid:10416260   Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2006). Global Strategy for the Diagnosis, Mangement and Prevention of Chronic Obstructive Pulmonary Disease. Available at [http://www.goldcopd.com]. Accessed April 14, 2009.   Hanene C, Jihene L, Jamel A, Kamel H, et al. (2007). Association of GST genes polymorphisms with asthma in Tunisian children. Mediators Inflamm. 2007: 19564. [DOI: 10.1155/2007/19564]. http://dx.doi.org/10.1155/2007/19564   Harries LW, Stubbins MJ, Forman D, Howard GC, et al. (1997). Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18: 641-644. http://dx.doi.org/10.1093/carcin/18.4.641 PMid:9111193   He JQ, Connett JE, Anthonisen NR, Pare PD, et al. (2004). Glutathione S-transferase variants and their interaction with smoking on lung function. Am. J. Respir. Crit. Care Med. 170: 388-394. http://dx.doi.org/10.1164/rccm.200312-1763OC PMid:15184197   Hu X, O'Donnell R, Srivastava SK, Xia H, et al. (1997). Active site architecture of polymorphic forms of human glutathione S-transferase P1-1 accounts for their enantioselectivity and disparate activity in the glutathione conjugation of 7beta,8alpha-dihydroxy-9alpha,10alpha-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Biochem. Biophys. Res. Commun. 235: 424-428. http://dx.doi.org/10.1006/bbrc.1997.6777 PMid:9199210   Ishii T, Matsuse T, Teramoto S, Matsui H, et al. (1999). Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 54: 693-696. http://dx.doi.org/10.1136/thx.54.8.693 PMid:10413721 PMCid:1745535   Johansson AS, Stenberg G, Widersten M and Mannervik B (1998). Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. J. Mol. Biol. 278: 687-698. http://dx.doi.org/10.1006/jmbi.1998.1708 PMid:9600848   Katoh T, Kaneko S, Takasawa S, Nagata N, et al. (1999). Human glutathione S-transferase P1 polymorphism and susceptibility to smoking related epithelial cancer; oral, lung, gastric, colorectal and urothelial cancer. Pharmacogenetics 9: 165-169. PMid:10376763   Lokke A, Lange P, Scharling H, Fabricius P, et al. (2006). Developing COPD: a 25 year follow-up study of the general population. Thorax 61: 935-939. http://dx.doi.org/10.1136/thx.2006.062802 PMid:17071833 PMCid:2121175   Morita S, Yano M, Tsujinaka T, Ogawa A, et al. (1998). Association between genetic polymorphisms of glutathione S-transferase P1 and N-acetyltransferase 2 and susceptibility to squamous-cell carcinoma of the esophagus. Int. J. Cancer 79: 517-520. http://dx.doi.org/10.1002/(SICI)1097-0215(19981023)79:5<517::AID-IJC12>3.0.CO;2-Z   Murray CJ and Lopez AD (1997). Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 349: 1498-1504. http://dx.doi.org/10.1016/S0140-6736(96)07492-2   Nebert DW and Vasiliou V (2004). Analysis of the glutathione S-transferase (GST) gene family. Hum. Genomics 1: 460-464. http://dx.doi.org/10.1186/1479-7364-1-6-460 PMid:15607001 PMCid:3500200   Pauwels RA and Rabe KF (2004). Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 364: 613-620. http://dx.doi.org/10.1016/S0140-6736(04)16855-4   Rodríguez F, de la Roza C, Jardi R, Schaper M, et al. (2005). Glutathione S-transferase P1 and lung function in patients with alpha1-antitrypsin deficiency and COPD. Chest 127: 1537-1543. http://dx.doi.org/10.1378/chest.127.5.1537 PMid:15888825   Ryberg D, Skaug V, Hewer A, Phillips DH, et al. (1997). Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18: 1285-1289. http://dx.doi.org/10.1093/carcin/18.7.1285 PMid:9230269   Smolonska J, Wijmenga C, Postma DS and Boezen HM (2009). Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years' research. Am. J. Respir. Crit. Care Med. 180: 618-631. http://dx.doi.org/10.1164/rccm.200905-0722OC PMid:19608716   Strange RC, Spiteri MA, Ramachandran S and Fryer AA (2001). Glutathione-S-transferase family of enzymes. Mutat. Res. 482: 21-26. http://dx.doi.org/10.1016/S0027-5107(01)00206-8   Sundberg K, Johansson AS, Stenberg G, Widersten M, et al. (1998). Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19: 433-436. http://dx.doi.org/10.1093/carcin/19.3.433 PMid:9525277   Tamer L, Calikoglu M, Ates NA, Yildirim H, et al. (2004). Glutathione-S-transferase gene polymorphisms (GSTT1, GSTM1, GSTP1) as increased risk factors for asthma. Respirology 9: 493-498. http://dx.doi.org/10.1111/j.1440-1843.2004.00657.x PMid:15612961   van Lieshout EM, Roelofs HM, Dekker S, Mulder CJ, et al. (1999). Polymorphic expression of the glutathione S-transferase P1 gene and its susceptibility to Barrett's esophagus and esophageal carcinoma. Cancer Res. 59: 586-589. PMid:9973204   Watson MA, Stewart RK, Smith GB, Massey TE, et al. (1998). Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19: 275-280. http://dx.doi.org/10.1093/carcin/19.2.275 PMid:9498276   Whalen R and Boyer TD (1998). Human glutathione S-transferases. Semin. Liver Dis. 18: 345-358. http://dx.doi.org/10.1055/s-2007-1007169 PMid:9875553   World Health Organization (WHO) (2002). The World Health Report 2002 - Reducing Risks, Promoting Healthy Life. Available at [http://www.who.int/whr/2002/en/]. Accessed March 3, 2009.   Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J, et al. (1994). Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur. J. Biochem. 224: 893-899. http://dx.doi.org/10.1111/j.1432-1033.1994.00893.x PMid:7925413