Publications
Found 9 results
Filters: Author is X. Cheng [Clear All Filters]
“Bioinformatic and expression analysis of the OMT gene family in Pyrus bretschneideri cv. Dangshan Su”, vol. 15, p. -, 2016.
, “Bioinformatic and expression analysis of the OMT gene family in Pyrus bretschneideri cv. Dangshan Su”, vol. 15, p. -, 2016.
, “Comparative analysis of the liver tissue transcriptomes of Mongolian and Lanzhou fat-tailed sheep”, vol. 15, p. -, 2016.
, “Comparative analysis of the liver tissue transcriptomes of Mongolian and Lanzhou fat-tailed sheep”, vol. 15, p. -, 2016.
, “Effects of tail docking on the expression of genes related to lipid metabolism in Lanzhou fat-tailed sheep”, vol. 15, p. -, 2016.
, , , “Genome-wide analysis of cyclins in maize (Zea mays)”, vol. 9, pp. 1490-1503, 2010.
, Barroco RM, De Veylder L, Magyar Z, Engler G, et al. (2003). Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell Mol. Life Sci. 60: 401-412.
http://dx.doi.org/10.1007/s000180300033
PMid:12678503
Booher RN, Alfa CE, Hyams JS and Beach DH (1989). The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485-497.
http://dx.doi.org/10.1016/0092-8674(89)90429-7
Breyne P, Dreesen R, Vandepoele K, De Veylder L, et al. (2002). Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. U.S.A. 99: 14825-14830.
http://dx.doi.org/10.1073/pnas.222561199
PMid:12393816 PMCid:137503
Cyr RJ and Palevitz BA (1995). Organization of cortical microtubules in plant cells. Curr. Opin. Cell Biol. 7: 65-71.
http://dx.doi.org/10.1016/0955-0674(95)80046-8
Gutierrez C, Ramirez-Parra E, Castellano MM and del Pozo JC (2002). G(1) to S transition: more than a cell cycle engine switch. Curr. Opin. Plant Biol. 5: 480-486.
http://dx.doi.org/10.1016/S1369-5266(02)00301-1
Hata S, Kouchi H, Suzuka I and Ishii T (1991). Isolation and characterization of cDNA clones for plant cyclins. EMBO J. 10: 2681-2688.
PMid:1831125 PMCid:452970
Horne MC, Goolsby GL, Donaldson KL, Tran D, et al. (1996). Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J. Biol. Chem. 271: 6050-6061.
http://dx.doi.org/10.1074/jbc.271.11.6050
PMid:8626390
Jiang S and Ramachandran S (2004). Identification and molecular characterization of myosin gene family in Oryza sativa genome. Plant Cell Physiol. 45: 590-599.
http://dx.doi.org/10.1093/pcp/pch061
PMid:15169941
John PCL, Mews M and Moore R (2001). Cyclin/CDK complexes: Their involvement in cell cycle progression and mitotic division. Protoplasma 216: 119-142.
http://dx.doi.org/10.1007/BF02673865
PMid:11732181
Kumar S, Tamura K and Nei M (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163.
http://dx.doi.org/10.1093/bib/5.2.150
PMid:15260895
La H, Li J, Ji Z, Cheng Y, et al. (2006). Genome-wide analysis of cyclin family in rice (Oryza sativa L.). Mol. Genet. Genomics 275: 374-386.
http://dx.doi.org/10.1007/s00438-005-0093-5
PMid:16435118
Lehner CF and O'Farrell PH (1990). The roles of Drosophila cyclins A and B in mitotic control. Cell 61: 535-547.
http://dx.doi.org/10.1016/0092-8674(90)90535-M
Nakamura T, Sanokawa R, Sasaki YF, Ayusawa D, et al. (1995). Cyclin I: a new cyclin encoded by a gene isolated from human brain. Exp. Cell Res. 221: 534-542.
http://dx.doi.org/10.1006/excr.1995.1406
PMid:7493655
Nieduszynski CA, Murray J and Carrington M (2002). Whole-genome analysis of animal A- and B-type cyclins. Genome Biol. 3: RESEARCH0070.
Nugent JH, Alfa CE, Young T and Hyams JS (1991). Conserved structural motifs in cyclins identified by sequence analysis. J. Cell Sci. 99 (Pt 3): 669-674.
PMid:1834684
Obaya AJ and Sedivy JM (2002). Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol. Life Sci. 59: 126-142.
http://dx.doi.org/10.1007/s00018-002-8410-1
PMid:11846025
Pagano M, Pepperkok R, Verde F, Ansorge W, et al. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J. 11: 961-971.
PMid:1312467 PMCid:556537
Pines J (2002). Confirmational change. Nature 376: 294-295.
http://dx.doi.org/10.1038/376294a0
PMid:7630391
Plowman GD, Sudarsanam S, Bingham J, Whyte D, et al. (1999). The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc. Natl. Acad. Sci. U.S.A. 96: 13603-13610.
http://dx.doi.org/10.1073/pnas.96.24.13603
PMid:10570119 PMCid:24111
Potuschak T and Doerner P (2001). Cell cycle controls: genome-wide analysis in Arabidopsis. Curr. Opin. Plant Biol. 4: 501-506.
http://dx.doi.org/10.1016/S1369-5266(00)00207-7
Quiroz-Figueroa F and Vázquez-Ramos JM (2006). Expression of maize D-type cyclins: comparison, regulation by phytohormones during seed germination and description of a new D cyclin. Physiol. Plantarum 128: 556-568.
http://dx.doi.org/10.1111/j.1399-3054.2006.00769.x
Renaudin JP, Colasanti J, Rime H, Yuan Z, et al. (1994). Cloning of four cyclins from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins. Proc. Natl. Acad. Sci. U.S.A. 91: 7375-7379.
http://dx.doi.org/10.1073/pnas.91.15.7375
PMid:8041798 PMCid:44402
Renaudin JP, Doonan JH, Freeman D, Hashimoto J, et al. (1996). Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003-1018.
http://dx.doi.org/10.1007/BF00041384
PMid:9002599
Rossi V and Varotto S (2002). Insights into the G1/S transition in plants. Planta 215: 345-356.
http://dx.doi.org/10.1007/s00425-002-0780-y
PMid:12111215
Roudier F, Fedorova E, Gyorgyey J, Feher A, et al. (2000). Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclin-dependent kinase and a retinoblastoma protein. Plant J. 23: 73-83.
http://dx.doi.org/10.1046/j.1365-313x.2000.00794.x
PMid:10929103
Schnable PS, Ware D, Fulton RS, Stein JC, et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112-1115.
http://dx.doi.org/10.1126/science.1178534
PMid:19965430
Shen WH (2002). The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci. 7: 505-511.
http://dx.doi.org/10.1016/S1360-1385(02)02351-8
Sherr CJ and Roberts JM (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501-1512.
http://dx.doi.org/10.1101/gad.13.12.1501
PMid:10385618
Smith LG (1999). Divide and conquer: cytokinesis in plant cells. Curr. Opin. Plant Biol. 2: 447-453.
http://dx.doi.org/10.1016/S1369-5266(99)00022-9
Stals H and Inze D (2001). When plant cells decide to divide. Trends Plant Sci. 6: 359-364.
http://dx.doi.org/10.1016/S1360-1385(01)02016-7
Sun Y, Flannigan BA and Setter TL (1999). Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Mol. Biol. 41: 245-258.
http://dx.doi.org/10.1023/A:1006315625486
PMid:10579491
Trimarchi JM and Lees JA (2002). Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3: 11-20.
http://dx.doi.org/10.1038/nrm714
PMid:11823794
Umeda M, Iwamoto N, Umeda-Hara C, Yamaguchi M, et al. (1999). Molecular characterization of mitotic cyclins in rice plants. Mol. Gen. Genet. 262: 230-238.
http://dx.doi.org/10.1007/s004380051079
PMid:10517318
Vandepoele K, Raes J, De Veylder L, Rouze P, et al. (2002). Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903-916.
http://dx.doi.org/10.1105/tpc.010445
PMid:11971144 PMCid:150691
Vision TJ, Brown DG and Tanksley SD (2000). The origins of genomic duplications in Arabidopsis. Science 290: 2114-2117.
http://dx.doi.org/10.1126/science.290.5499.2114
PMid:11118139
Wang GF, Kong HZ, Sun YJ and Zhang XH (2004). Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol. 135: 1084-1099.
http://dx.doi.org/10.1104/pp.104.040436
PMid:15208425 PMCid:514142
Yamaguchi M, Fabian T, Sauter M, Bhalerao RP, et al. (2000). Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant J. 24: 11-20.
http://dx.doi.org/10.1046/j.1365-313x.2000.00846.x
PMid:11029700
Yu Y, Steinmetz A, Meyer D, Brown S, et al. (2003). The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15: 2763-2777.
http://dx.doi.org/10.1105/tpc.015990
PMid:14615597 PMCid:282795
“Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins”, vol. 9, pp. 348-359, 2010.
, Asakura Y, Hagino T, Ohta Y, Aoki K, et al. (2003). Molecular characterization of His-Asp phosphorelay signaling factors in maize leaves: implications of the signal divergence by cytokinin-inducible response regulators in the cytosol and the nuclei. Plant Mol. Biol. 52: 331-341.
http://dx.doi.org/10.1023/A:1023971315108
PMid:12856940
Brandstatter I and Kieber JJ (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10: 1009-1019.
PMid:9634588 PMCid:144033
Gan and Amansino (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988.
http://dx.doi.org/10.1126/science.270.5244.1986
PMid:8592746
Giulini A, Wang J and Jackson D (2004). Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031-1034.
http://dx.doi.org/10.1038/nature02778
PMid:15329722
Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, et al. (2004). In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. U. S. A. 101: 8821-8826.
http://dx.doi.org/10.1073/pnas.0402887101
PMid:15166290 PMCid:423279
Hirose N, Makita N, Kojima M, Kamada-Nobusada T, et al. (2007). Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol. 48: 523-539.
http://dx.doi.org/10.1093/pcp/pcm022
PMid:17293362
Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, et al. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59: 75-83.
http://dx.doi.org/10.1093/jxb/erm157
PMid:17872922
Hutchison CE, Li J, Argueso C, Gonzalez M, et al. (2006). The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18: 3073-3087.
http://dx.doi.org/10.1105/tpc.106.045674
PMid:17122069 PMCid:1693944
Hwang I and Sheen J (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389.
http://dx.doi.org/10.1038/35096500
PMid:11574878
Hwang I, Chen HC and Sheen J (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129: 500-515.
http://dx.doi.org/10.1104/pp.005504
PMid:12068096 PMCid:161668
Imamura A, Hanaki N, Umeda H, Nakamura A, et al. (1998). Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95: 2691-2696.
http://dx.doi.org/10.1073/pnas.95.5.2691
PMid:9482949 PMCid:19464
Inoue T, Higuchi M, Hashimoto Y, Seki M, et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409: 1060-1063.
http://dx.doi.org/10.1038/35059117
PMid:11234017
Ito Y and Kurata N (2006). Identification and characterization of cytokinin-signalling gene families in rice. Gene 382: 57-65.
http://dx.doi.org/10.1016/j.gene.2006.06.020
PMid:16919402
Jain M, Tyagi AK and Khurana JP (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol. 6: 1.
http://dx.doi.org/10.1186/1471-2229-6-1
PMid:16472405 PMCid:1382228
Kakimoto T (1996). CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274: 982-985.
http://dx.doi.org/10.1126/science.274.5289.982
PMid:8875940
Kakimoto T (2003). Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 54: 605-627.
http://dx.doi.org/10.1146/annurev.arplant.54.031902.134802
PMid:14503005
Kiba T, Yamada H, Sato S, Kato T, et al. (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 44: 868-874.
http://dx.doi.org/10.1093/pcp/pcg108
PMid:12941880
Lee DJ, Park JY, Ku SJ, Ha YM, et al. (2007). Genome-wide expression profiling of Arabidopsis response regulator 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277: 115-137.
http://dx.doi.org/10.1007/s00438-006-0177-x
PMid:17061125
Lohrmann J and Harter K (2002). Plant two-component signaling systems and the role of response regulators. Plant Physiol. 128: 363-369.
http://dx.doi.org/10.1104/pp.010907
PMid:11842140 PMCid:1540209
Lohrmann J, Buchholz G, Keitel C, Sweere U, et al. (1999). Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 5: 495-505.
http://dx.doi.org/10.1111/j.1438-8677.1999.tb00775.x
Miller CO, Skoog F, Von Saltza MH and Strong F (1955). Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 77: 1392.
http://dx.doi.org/10.1021/ja01610a105
Mok DW and Mok MC (2001). Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 89-118.
http://dx.doi.org/10.1146/annurev.arplant.52.1.89
PMid:11337393
Muller B and Sheen J (2007). Advances in cytokinin signaling. Science 318: 68-69.
http://dx.doi.org/10.1126/science.1145461
PMid:17916725
Nishimura C, Ohashi Y, Sato S, Kato T, et al. (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16: 1365-1377.
http://dx.doi.org/10.1105/tpc.021477
PMid:15155880 PMCid:490032
Osakabe Y, Miyata S, Urao T, Seki M, et al. (2002). Overexpression of Arabidopsis response regulators, ARR4/ATRR1/ IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem. Biophys. Res. Commun. 293: 806-815.
http://dx.doi.org/10.1016/S0006-291X(02)00286-3
Porra RJ, Thompson WA and Kriedemann PE (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384-394.
http://dx.doi.org/10.1016/S0005-2728(89)80347-0
Sakai H, Aoyama T, Bono H and Oka A (1998). Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol. 39: 1232-1239.
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029325
PMid:9891419
Sakai H, Aoyama T and Oka A (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24: 703-711.
http://dx.doi.org/10.1046/j.1365-313x.2000.00909.x
PMid:11135105
Sakakibara H, Suzuki M, Takei K, Deji A, et al. (1998). A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J. 14: 337-344.
http://dx.doi.org/10.1046/j.1365-313X.1998.00134.x
PMid:9628026
Sentoku N, Sato Y and Matsuoka M (2000). Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev. Biol. 220: 358-364.
http://dx.doi.org/10.1006/dbio.2000.9624
PMid:10753522
Stock AM, Robinson VL and Goudreau PN (2000). Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215.
http://dx.doi.org/10.1146/annurev.biochem.69.1.183
PMid:10966457
Suzuki T, Imamura A, Ueguchi C and Mizuno T (1998). Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant Cell Physiol 39: 1258-1268.
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029329
PMid:10050311
Suzuki T, Miwa K, Ishikawa K, Yamada H, et al. (2001). The Arabidopsis sensor His-kinase, AHk4, can respond to cytokinins. Plant Cell Physiol. 42: 107-113.
http://dx.doi.org/10.1093/pcp/pce037
PMid:11230563
Taniguchi M, Kiba T, Sakakibara H, Ueguchi C, et al. (1998). Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett. 429: 259-262.
http://dx.doi.org/10.1016/S0014-5793(98)00611-5
Ueguchi C, Koizumi H, Suzuki T and Mizuno T (2001a). Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42: 231-235.
http://dx.doi.org/10.1093/pcp/pce015
PMid:11230578
Ueguchi C, Sato S, Kato T and Tabata S (2001b). The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol. 42: 751-755.
http://dx.doi.org/10.1093/pcp/pce094
PMid:11479382
Urao T, Yakubov B, Yamaguchi-Shinozaki K and Shinozaki K (1998). Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett. 427: 175-178.
http://dx.doi.org/10.1016/S0014-5793(98)00418-9
Werner T, Motyka V, Laucou V, Smets R, et al. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532-2550.
http://dx.doi.org/10.1105/tpc.014928
PMid:14555694 PMCid:280559
West AH and Stock AM (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376.
http://dx.doi.org/10.1016/S0968-0004(01)01852-7
Yonekura-Sakakibara K, Kojima M, Yamaya T and Sakakibara H (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134: 1654-1661.
http://dx.doi.org/10.1104/pp.103.037176
PMid:15064375 PMCid:419839