Publications
Found 21 results
Filters: Author is X.F. Li [Clear All Filters]
“Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients”, vol. 15, p. -, 2016.
, “Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients”, vol. 15, p. -, 2016.
, “Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population”, vol. 15, p. -, 2016.
, “Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population”, vol. 15, p. -, 2016.
, “Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population”, vol. 15, p. -, 2016.
, “Comparison of two methods for RNA extraction from the nucleus pulposus of intervertebral discs”, vol. 15, p. -, 2016.
, “Comparison of two methods for RNA extraction from the nucleus pulposus of intervertebral discs”, vol. 15, p. -, 2016.
, “Genetic diversity of Toona sinensis Roem in China revealed by ISSR and SRAP markers”, vol. 15, p. -, 2016.
, “Genetic diversity of Toona sinensis Roem in China revealed by ISSR and SRAP markers”, vol. 15, p. -, 2016.
, “Differential expression of COX-2 in osteoarthritis and rheumatoid arthritis”, vol. 14, pp. 12872-12879, 2015.
, “Functional characterization and analysis of the Arabidopsis UGT71C5 promoter region”, vol. 14, pp. 19173-19183, 2015.
, “Mutation analysis of four Chinese families with pure hereditary spastic paraplegia: pseudo- X-linked dominant inheritance and male lethality due to a novel ATL1 mutation”, vol. 14, pp. 14690-14697, 2015.
, “Relationship between urinary protein changes in lupus nephritis and renal pathology”, vol. 14, pp. 8352-8358, 2015.
, “VDAC2 involvement in the stress response pathway in Arabidopsis thaliana”, vol. 14, pp. 15511-15519, 2015.
, , ,
“Analysis of genetic diversity in Larix gmelinii (Pinaceae) with RAPD and ISSR markers”, vol. 12. pp. 196-207, 2013.
, Bucci G, Vendramin GG, Lelli L and Vicario F (1997). Assessing the genetic divergence of Pinus leucodermis Ant. endangered populations: use of molecular markers for conservation purposes. Theor. Appl. Genet. 95: 1138-1146.
http://dx.doi.org/10.1007/s001220050674
Changtragoon S (1995). Inheritance of isozyme phenotypes of Pinus merkusii. J. Trop. For. Sci. 8: 167-177.
Goto S, Thakur RC and Ishii K (1998). Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep. 18: 193-197.
http://dx.doi.org/10.1007/s002990050555
Labra M, Grassi F, Sgorbati S and Ferrari C (2006). Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Pennines. Flora Morph. Distrib. Func. Ecol. Plants 201: 468-476.
http://dx.doi.org/10.1016/j.flora.2005.10.004
Larionova AI, Iakhneva NV and Abaimov AP (2004). Genetic diversity and differentiation of Gmelin larch Larix gmelinii populations from Evenkia (Central Siberia). Genetika 40: 1370-1377.
PMid:15575504
Lee SW, Ledig FT and Johnson DR (2002). Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. Am. J. Bot. 89: 566-577.
http://dx.doi.org/10.3732/ajb.89.4.566
PMid:21665657
Li W (2004). Study on genetic diversity of Pinus sibirica du tour with ISSR-PCR. Northeast For. Univ.
Liu GF, Dong JX, Jiang Y, Lu YF, et al. (2005). Analysis of genetic relationship in 12 species of Section Strobus with ISSR markers. J. For. Res. 16: 213-215.
http://dx.doi.org/10.1007/BF02856817
Majourhat K, Jabbar A, Hafidi A and Martínez-Gomez P (2008). Molecular characterization and genetic relationships among most common identified morphotypes of critically endangered rare Moroccan species Argania spinosa (Sapotaceae) using RAPD and SSR markers. Ann. For. Sci. 65: 805.
http://dx.doi.org/10.1051/forest:2008069
Messaoud C, Afif M, Boulila A, Rejeb MN, et al. (2007). Genetic variation of Tunisian Myrtus communis L. (Myrtaceae) populations assessed by isozymes and RAPDs. Ann. For. Sci. 64: 845-853.
http://dx.doi.org/10.1051/forest:2007061
Na D, Yang C and Jiang J (2006). Analysis on the genetic diversity of Larix gmelinii provenance by using ISSR markers. For. Sci. Tech. 31: 1-4.
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
PMid:291943 PMCid:413122
Oreshkova NV, Larionova AY, Milyutin LI and Abaimov AP (2006). Genetic diversity structure and differentiation of Gmelin Larch (Larix gmelinii (Rupr.) Rupr.) populations from Central Evenkia and Eastern Zabaikalje. Eurasian J. For. Res. 9-1: 1-8.
Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15.
http://dx.doi.org/10.1007/BF02772108
Raymond PG and Ledig FT (1982). Genetic diversity and population structure in pitch pine (Pinus rigida mill.). Evolution 36: 387-402.
http://dx.doi.org/10.2307/2408058
Shahraji TR, Kazempour MN and Adbesh Z (2009). Genetic (RAPD) diversity in loblolly pine unknown provenance plantation in Iran. Indian J. Hortic. 66: 35-38.
Wang MB and Gao FQ (2009). Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China. Biochem. Genet. 47: 154-164.
http://dx.doi.org/10.1007/s10528-009-9225-7
PMid:19169805
Xue X, Wang Y, Korpelainen H and Li C (2007). Genetic diversity of Picea asperata populations based on RAPDs. Plant Biol. 9: 101-108.
http://dx.doi.org/10.1055/s-2006-924455
PMid:17006797
Yang CP, Jiang J, Tang SS, Li JY, et al. (2002). The provenance test of 21-year Old Larix gmelinii at Maoershan area. J. Northeast For. Univ. 30: 6.
Yeh FC, Yang R and Boyle T (1999). POPGENE, Version 1.31, Microsoft Window-Based Freeware for Population Genetic Analysis. Centre for International Forestry Research, University of Alberta and Tim Boyle. Available at [http://www.ualberta.ca/~fyeh/popgene.pdf]. Accessed August 30, 1999.
Zemanová E, Jirku M, Mauricio IL, Miles MA, et al. (2004). Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. Am. J. Trop. Med. Hyg. 70: 613-617.
PMid:15211001
Zhang HG, Wang H, Xiao Y and Zhang CF (2002). Population genetic diversity of Picea koraiensis with allozyme techniques. J. Northeast For. Univ. 30: 21-25.
“A novel mutation of the MFN2 gene in a Chinese family with Charcot-Marie-Tooth disease”, vol. 11. pp. 1454-1459, 2012.
, Banchs I, Casasnovas C, Montero J, Martinez-Matos JA, et al. (2008). Two Spanish families with Charcot-Marie-Tooth type 2A: clinical, electrophysiological and molecular findings. Neuromuscul. Disord. 18: 974-978.http://dx.doi.org/10.1016/j.nmd.2008.09.006PMid:18996695Barisic N, Claeys KG, Sirotkovic-Skerlev M, Lofgren A, et al. (2008). Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann. Hum. Genet. 72: 416-441.http://dx.doi.org/10.1111/j.1469-1809.2007.00412.xPMid:18215208Cartoni R and Martinou JC (2009). Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp. Neurol. 218: 268-273.http://dx.doi.org/10.1016/j.expneurol.2009.05.003PMid:19427854Chung KW, Kim SB, Park KD, Choi KG, et al. (2006). Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129: 2103-2118.http://dx.doi.org/10.1093/brain/awl174PMid:16835246Engelfried K, Vorgerd M, Hagedorn M, Haas G, et al. (2006). Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med. Genet. 7: 53.http://dx.doi.org/10.1186/1471-2350-7-53PMid:16762064 PMCid:1524942Honda S, Aihara T, Hontani M, Okubo K, et al. (2005). Mutational analysis of action of mitochondrial fusion factor mitofusin-2. J. Cell Sci. 118: 3153-3161.http://dx.doi.org/10.1242/jcs.02449PMid:15985463Kijima K, Numakura C, Izumino H, Umetsu K, et al. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot- Marie-Tooth neuropathy type 2A. Hum. Genet. 116: 23-27.http://dx.doi.org/10.1007/s00439-004-1199-2PMid:15549395Koshiba T, Detmer SA, Kaiser JT, Chen H, et al. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305: 858-862.http://dx.doi.org/10.1126/science.1099793PMid:15297672Nicolaou P, Zamba-Papanicolaou E, Koutsou P, Kleopa KA, et al. (2010). Charcot-Marie-Tooth disease in Cyprus: epidemiological, clinical and genetic characteristics. Neuroepidemiology 35: 171-177.http://dx.doi.org/10.1159/000314351PMid:20571287Rojo M, Legros F, Chateau D and Lombes A (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115: 1663-1674.PMid:11950885Santel A and Fuller MT (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114: 867-874.PMid:11181170Verhoeven K, Claeys KG, Zuchner S, Schroder JM, et al. (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129: 2093-2102.http://dx.doi.org/10.1093/brain/awl126PMid:16714318Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36: 449-451.http://dx.doi.org/10.1038/ng1341PMid:15064763
“Characterization of the complete mitochondrial genome of the Rock pigeon, Columba livia (Columbiformes: Columbidae)”, vol. 9, pp. 1234-1249, 2010.
, Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780.
http://dx.doi.org/10.1093/nar/27.8.1767
PMid:10101183 PMCid:148383
Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511.
http://dx.doi.org/10.1016/0022-2836(86)90272-X
Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, et al. (2001). Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409: 704-707.
http://dx.doi.org/10.1038/35055536
PMid:11217857
Gibb GC, Kardailsky O, Kimball RT, Braun EL, et al. (2007). Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24: 269-280.
http://dx.doi.org/10.1093/molbev/msl158
PMid:17062634
Haddrath O and Baker AJ (2001). Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc. Biol. Sci. 268: 939-945.
http://dx.doi.org/10.1098/rspb.2001.1587
PMid:11370967 PMCid:1088691
Hall AT (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.
Harlid A, Janke A and Arnason U (1998). The complete mitochondrial genome of Rhea americana and early avian divergences. J. Mol. Evol. 46: 669-679.
http://dx.doi.org/10.1007/PL00006347
PMid:9608049
Harrison GL, McLenachan PA, Phillips MJ, Slack KE, et al. (2004). Four new avian mitochondrial genomes help get to basic evolutionary questions in the late cretaceous. Mol. Biol. Evol. 21: 974-983.
http://dx.doi.org/10.1093/molbev/msh065
PMid:14739240
Hazkani-Covo E, Zeller RM and Martin W (2010). Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6: e1000834.
http://dx.doi.org/10.1371/journal.pgen.1000834
PMid:20168995 PMCid:2820518
Howard R and Moore A (2003). The Howard and Moore Complete Checklist of the Birds of the World. 3rd edn. Christopher Helm, London.
L'Abbé D, Duhaime JF, Lang BF and Morais R (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J. Biol. Chem. 266: 10844-10850.
PMid:1710214
Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
http://dx.doi.org/10.1093/bioinformatics/btm404
PMid:17846036
Livezey BC and Zusi RL (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 149: 1-95.
http://dx.doi.org/10.1111/j.1096-3642.2006.00293.x
PMid:18784798 PMCid:2517308
Lohse M, Drechsel O and Bock R (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274.
http://dx.doi.org/10.1007/s00294-007-0161-y
PMid:17957369
Lowe TM and Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.
PMid:9023104 PMCid:146525
Mindell DP, Sorenson MD and Dimcheff DE (1998). Multiple independent origins of mitochondrial gene order in birds. Proc. Natl. Acad. Sci. U. S. A. 95: 10693-10697.
http://dx.doi.org/10.1073/pnas.95.18.10693
PMid:9724766 PMCid:27957
Moore WS (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726.
http://dx.doi.org/10.2307/2410325
Morgan-Richards M, Trewick SA, Bartosch-Harlid A, Kardailsky O, et al. (2008). Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evol. Biol. 8: 20.
http://dx.doi.org/10.1186/1471-2148-8-20
PMid:18215323 PMCid:2259304
Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385.
http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x
PMid:11736810
Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim Genet. 36: 367-375.
http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x
PMid:16167978
Paton T, Haddrath O and Baker AJ (2002). Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc. Biol. Sci. 269: 839-846.
http://dx.doi.org/10.1098/rspb.2002.1961
PMid:11958716 PMCid:1690957
Pereira SL, Johnson KP, Clayton DH and Baker AJ (2007). Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene. Syst. Biol. 56: 656-672.
http://dx.doi.org/10.1080/10635150701549672
PMid:17661233
Perna NT and Kocher TD (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358.
http://dx.doi.org/10.1007/BF01215182
PMid:7563121
Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, et al. (2009). Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors. Mol. Biol. Evol. 26: 313-326.
http://dx.doi.org/10.1093/molbev/msn248
PMid:18981298
Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462.
http://dx.doi.org/10.1007/PL00006402
PMid:9767690
Rokas A, Williams BL, King N and Carroll SB (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804.
http://dx.doi.org/10.1038/nature02053
PMid:14574403
Saccone C, Pesole G and Sbisa E (1991). The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33: 83-91.
http://dx.doi.org/10.1007/BF02100199
PMid:1909377
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
San Mauro D, Garcia-Paris M and Zardoya R (2004). Phylogenetic relationships of discoglossid frogs (Amphibia: Anura: Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343: 357-366.
http://dx.doi.org/10.1016/j.gene.2004.10.001
PMid:15588590
Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140.
http://dx.doi.org/10.1016/S0378-1119(97)00404-6
Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435.
http://dx.doi.org/10.1146/annurev.biochem.66.1.409
PMid:9242913
Shen X, Tian M, Liu Z, Cheng H, et al. (2009). Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439: 79-86.
http://dx.doi.org/10.1016/j.gene.2009.03.008
PMid:19306915
Slack KE, Janke A, Penny D and Arnason U (2003). Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene 302: 43-52.
http://dx.doi.org/10.1016/S0378111902010533
PMid:12527195
Slack KE, Jones CM, Ando T, Harrison GL, et al. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol. Biol. Evol. 23: 1144-1155.
http://dx.doi.org/10.1093/molbev/msj124
PMid:16533822
Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13.
http://dx.doi.org/10.1016/j.ympev.2006.06.002
PMid:16854605
Walberg MW and Clayton DA (1981). Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9: 5411-5421.
http://dx.doi.org/10.1093/nar/9.20.5411
PMid:7301592 PMCid:327529
Wang C, Chen Q, Lu G, Xu J, et al. (2008). Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae. Gene 424: 96-101.
http://dx.doi.org/10.1016/j.gene.2008.07.011
PMid:18706492
Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216.
http://dx.doi.org/10.1016/S0074-7696(08)62066-5
Wyman SK, Jansen RK and Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255.
http://dx.doi.org/10.1093/bioinformatics/bth352
PMid:15180927
Xia X and Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373.
http://dx.doi.org/10.1093/jhered/92.4.371
PMid:11535656
“Complete mitochondrial genome of Cabot’s tragopan, Tragopan caboti (Galliformes: Phasianidae)”, vol. 9, pp. 1204-1216, 2010.
, Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780.
http://dx.doi.org/10.1093/nar/27.8.1767
PMid:10101183 PMCid:148383
Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511.
http://dx.doi.org/10.1016/0022-2836(86)90272-X
Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, et al. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22: 495-532.
http://dx.doi.org/10.1111/j.1096-0031.2006.00120.x
del Hoyo J, Elliot A and Sargatal J (1994). Handbook of the Birds of the World. Vol. 2. Lynx Editions, Barcelona, 434-557.
Deng WH and Zheng GM (2004). Landscape and habitat factors affecting Cabot's tragopan Tragopan caboti occurrence in habitat fragments. Biol. Conserv. 117: 25-32.
http://dx.doi.org/10.1016/S0006-3207(03)00259-3
Dyke GJ, Gulas BE and Crowe TM (2003). Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters. Zoolog. J. Linnean Soc. 137: 227-244.
http://dx.doi.org/10.1046/j.1096-3642.2003.00048.x
Guan X, Silva P, Gyenai KB, Xu J, et al. (2009). The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo. Anim. Genet. 40: 134-141.
http://dx.doi.org/10.1111/j.1365-2052.2008.01810.x
PMid:19067672 PMCid:2664387
He L, Dai B, Zeng B, Zhang X, et al. (2009). The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila rufipectus) and a phylogenetic analysis with related species. Gene 435: 23-28.
http://dx.doi.org/10.1016/j.gene.2009.01.001
PMid:19393190
IUCN (2009). IUCN Red List of Threatened Species. Gland, Switzerland. Available at [http://www.iucnredlist.org]. Accessed November 9, 2009.
Kumazawa Y and Nishida M (1993). Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 37: 380-398.
http://dx.doi.org/10.1007/BF00178868
PMid:7508516
L'Abbe D, Duhaime JF, Lang BF and Morais R (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J. Biol. Chem. 266: 10844-10850.
PMid:1710214
Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
http://dx.doi.org/10.1093/bioinformatics/btm404
PMid:17846036
Lohse M, Drechsel O and Bock R (2007). Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274.
http://dx.doi.org/10.1007/s00294-007-0161-y
PMid:17957369
Lowe TM and Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.
PMid:9023104 PMCid:146525
Mindell DP, Sorenson MD and Dimcheff DE (1998). An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol. Biol. Evol. 15: 1568-1571.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025884
PMid:12572620
Monroe BL and Sibley CG (1990). A World Checklist of Birds. Yale University Press, New Haven.
Moore WS (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726.
http://dx.doi.org/10.2307/2410325
Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385.
http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x
PMid:11736810
Nishibori M, Tsudzuki M, Hayashi T, Yamamoto Y, et al. (2002). Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species. J. Hered. 93: 439-444.
http://dx.doi.org/10.1093/jhered/93.6.439
PMid:12642645
Nishibori M, Hayashi T and Yasue H (2004). Complete nucleotide sequence of Numida meleagris (Helmeted guineafowl) mitochondrial genome. J. Poult. Sci. 41: 259-268.
http://dx.doi.org/10.2141/jpsa.41.259
Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet. 36: 367-375.
http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x
PMid:16167978
Perna NT and Kocher TD (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358.
http://dx.doi.org/10.1007/BF01215182
PMid:7563121
Quinn TW (1992). The genetic legacy of Mother Goose - phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol. Ecol. 1: 105-117.
http://dx.doi.org/10.1111/j.1365-294X.1992.tb00162.x
PMid:1344986
Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462.
http://dx.doi.org/10.1007/PL00006402
PMid:9767690
Ruokonen M and Kvist L (2002). Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol. 23: 422-432.
http://dx.doi.org/10.1016/S1055-7903(02)00021-0
Russell RD and Beckenbach AT (2008). Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J. Mol. Evol. 67: 682-695.
http://dx.doi.org/10.1007/s00239-008-9179-0
PMid:19030769 PMCid:2706983
Saccone C, Pesole G and Sbisa E (1991). The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33: 83-91.
http://dx.doi.org/10.1007/BF02100199
PMid:1909377
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
San Mauro D, Garcia-Paris M and Zardoya R (2004). Phylogenetic relationships of discoglossid frogs (Amphibia:Anura:Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343: 357- 366.
http://dx.doi.org/10.1016/j.gene.2004.10.001
PMid:15588590
Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140.
http://dx.doi.org/10.1016/S0378-1119(97)00404-6
Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435.
http://dx.doi.org/10.1146/annurev.biochem.66.1.409
PMid:9242913
Shen X, Tian M, Liu Z, Cheng H, et al. (2009a). Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439: 79-86.
http://dx.doi.org/10.1016/j.gene.2009.03.008
PMid:19306915
Shen YY, Shi P, Sun YB and Zhang YP (2009b). Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 19: 1760-1765.
http://dx.doi.org/10.1101/gr.093138.109
PMid:19617397 PMCid:2765268
Slack KE, Janke A, Penny D and Arnason U (2003). Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene 302: 43-52.
http://dx.doi.org/10.1016/S0378111902010533
PMid:12527195
Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13.
http://dx.doi.org/10.1016/j.ympev.2006.06.002
PMid:16854605
Walberg MW and Clayton DA (1981). Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9: 5411-5421.
http://dx.doi.org/10.1093/nar/9.20.5411
PMid:7301592 PMCid:327529
Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216.
http://dx.doi.org/10.1016/S0074-7696(08)62066-5
Wyman SK, Jansen RK and Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255.
http://dx.doi.org/10.1093/bioinformatics/bth352
PMid:15180927
Zhang JF, Nie LW, Wang Y and Hu LL (2009). The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene 442: 119-127.
http://dx.doi.org/10.1016/j.gene.2009.04.018
PMid:19397958
Zhang Y and Zheng G (2007). A population viability analysis (PVA) for Cabot's tragopan (Tragopan caboti) in Wuyanling, south-east China. Bird Conserv. Int. 17: 151-161.
http://dx.doi.org/10.1017/S0959270907000652
“No association of polymorphisms in the suppressor of cytokine signaling (SOCS)-3 with rheumatoid arthritis in the Chinese Han population”, vol. 9, pp. 1518-1524, 2010.
, Alexander WS (2002). Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2: 410-416.
PMid:12093007
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324.
http://dx.doi.org/10.1002/art.1780310302
PMid:3358796
Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, et al. (2004). Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350: 2572-2581.
http://dx.doi.org/10.1056/NEJMoa032534
PMid:15201414
Egan PJ, Lawlor KE, Alexander WS and Wicks IP (2003). Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J. Clin. Invest. 111: 915-924.
PMid:12639998 PMCid:153765
Firestein GS and Zvaifler NJ (1997). Anticytokine therapy in rheumatoid arthritis. N. Engl. J. Med. 337: 195-197.
http://dx.doi.org/10.1056/NEJM199707173370310
PMid:9219708
Gatto L, Berlato C, Poli V, Tininini S, et al. (2004). Analysis of SOCS-3 promoter responses to interferon gamma. J. Biol. Chem. 279: 13746-13754.
http://dx.doi.org/10.1074/jbc.M308999200
PMid:14742442
GMSTF (2005). Genomatix MatInspector Search for Transcription Factor Binding Sites. Available at [http://www.genomatix.de/online_help/help_matinspector/matinspector_help.html]. Acessed December 10, 2009.
Gylvin T, Nolsoe R, Hansen T, Nielsen EM, et al. (2004). Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in type 1 diabetes and insulin sensitivity. Diabetologia 47: 1273-1277.
http://dx.doi.org/10.1007/s00125-004-1440-5
PMid:15249995
Hölter K, Wermter AK, Scherag A, Siegfried W, et al. (2007). Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents. BMC Med. Genet. 8: 21.
http://dx.doi.org/10.1186/1471-2350-8-21
PMid:17445271 PMCid:1866222
Isomaki P, Alanara T, Isohanni P, Lagerstedt A, et al. (2007). The expression of SOCS is altered in rheumatoid arthritis. Rheumatology 46: 1538-1546.
http://dx.doi.org/10.1093/rheumatology/kem198
PMid:17726036
Jamshidi Y, Snieder H, Wang X, Spector TD, et al. (2006). Common polymorphisms in SOCS3 are not associated with body weight, insulin sensitivity or lipid profile in normal female twins. Diabetologia 49: 306-310.
http://dx.doi.org/10.1007/s00125-005-0093-3
PMid:16402267 PMCid:1364534
Maini R, St Clair EW, Breedveld F, Furst D, et al. (1999). Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354: 1932-1939.
http://dx.doi.org/10.1016/S0140-6736(99)05246-0
Paul C, Seiliez I, Thissen JP and Le Cam A (2000). Regulation of expression of the rat SOCS-3 gene in hepatocytes by growth hormone, interleukin-6 and glucocorticoids mRNA analysis and promoter characterization. Eur. J. Biochem. 267: 5849-5857.
http://dx.doi.org/10.1046/j.1432-1327.2000.01395.x
PMid:10998044
Rahman A (2007). Regulators of cytokine signalling in rheumatoid arthritis. Rheumatology 46: 1745-1746.
http://dx.doi.org/10.1093/rheumatology/kem285
PMid:17986480
Rottapel R (2001). Putting the brakes on arthritis: can suppressors of cytokine signaling (SOCS) suppress rheumatoid arthritis? J. Clin. Invest. 108: 1745-1747.
PMid:11748257 PMCid:209478
Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98.
http://dx.doi.org/10.1038/sj.cr.7290272
PMid:15740637
Shouda T, Yoshida T, Hanada T, Wakioka T, et al. (2001). Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108: 1781-1788.
PMid:11748261 PMCid:209467
Smolen JS and Steiner G (2003). Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2: 473-488.
http://dx.doi.org/10.1038/nrd1109
PMid:12776222
Starr R, Willson TA, Viney EM, Murray LJ, et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387: 917-921.
http://dx.doi.org/10.1038/43206
PMid:9202125
Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, et al. (1999). A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340: 253-259.
http://dx.doi.org/10.1056/NEJM199901283400401
PMid:9920948
Weinblatt ME, Keystone EC, Furst DE, Moreland LW, et al. (2003). Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48: 35-45.
http://dx.doi.org/10.1002/art.10697
PMid:12528101
Wong PK, Egan PJ, Croker BA, O'Donnell K, et al. (2006). SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J. Clin. Invest. 116: 1571-1581.
http://dx.doi.org/10.1172/JCI25660
PMid:16710471 PMCid:1462939