Publications

Found 21 results
Filters: Author is X.F. Li  [Clear All Filters]
2016
X. F. Li, Pan, D., Zhang, W. L., Zhou, J., Liang, J. J., Li, X. F., Pan, D., Zhang, W. L., Zhou, J., and Liang, J. J., Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients, vol. 15, p. -, 2016.
X. F. Li, Pan, D., Zhang, W. L., Zhou, J., Liang, J. J., Li, X. F., Pan, D., Zhang, W. L., Zhou, J., and Liang, J. J., Association of NT-proBNP and interleukin-17 levels with heart failure in elderly patients, vol. 15, p. -, 2016.
X. F. Li, Jiang, X. Q., Zhang, J. W., Jia, Y. J., Li, X. F., Jiang, X. Q., Zhang, J. W., Jia, Y. J., Li, X. F., Jiang, X. Q., Zhang, J. W., and Jia, Y. J., Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population, vol. 15, p. -, 2016.
X. F. Li, Jiang, X. Q., Zhang, J. W., Jia, Y. J., Li, X. F., Jiang, X. Q., Zhang, J. W., Jia, Y. J., Li, X. F., Jiang, X. Q., Zhang, J. W., and Jia, Y. J., Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population, vol. 15, p. -, 2016.
X. F. Li, Jiang, X. Q., Zhang, J. W., Jia, Y. J., Li, X. F., Jiang, X. Q., Zhang, J. W., Jia, Y. J., Li, X. F., Jiang, X. Q., Zhang, J. W., and Jia, Y. J., Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population, vol. 15, p. -, 2016.
M. F. Gan, Yang, H. L., Qian, J. L., Wu, C. S., Yuan, C. X., Li, X. F., Zou, J., Gan, M. F., Yang, H. L., Qian, J. L., Wu, C. S., Yuan, C. X., Li, X. F., and Zou, J., Comparison of two methods for RNA extraction from the nucleus pulposus of intervertebral discs, vol. 15, p. -, 2016.
M. F. Gan, Yang, H. L., Qian, J. L., Wu, C. S., Yuan, C. X., Li, X. F., Zou, J., Gan, M. F., Yang, H. L., Qian, J. L., Wu, C. S., Yuan, C. X., Li, X. F., and Zou, J., Comparison of two methods for RNA extraction from the nucleus pulposus of intervertebral discs, vol. 15, p. -, 2016.
P. Y. Xing, Liu, T., Song, Z. Q., Li, X. F., Xing, P. Y., Liu, T., Song, Z. Q., and Li, X. F., Genetic diversity of Toona sinensis Roem in China revealed by ISSR and SRAP markers, vol. 15, p. -, 2016.
P. Y. Xing, Liu, T., Song, Z. Q., Li, X. F., Xing, P. Y., Liu, T., Song, Z. Q., and Li, X. F., Genetic diversity of Toona sinensis Roem in China revealed by ISSR and SRAP markers, vol. 15, p. -, 2016.
2013
L. Zhang, Zhang, H. G., and Li, X. F., Analysis of genetic diversity in Larix gmelinii (Pinaceae) with RAPD and ISSR markers, vol. 12. pp. 196-207, 2013.
Bucci G, Vendramin GG, Lelli L and Vicario F (1997). Assessing the genetic divergence of Pinus leucodermis Ant. endangered populations: use of molecular markers for conservation purposes. Theor. Appl. Genet. 95: 1138-1146. http://dx.doi.org/10.1007/s001220050674   Changtragoon S (1995). Inheritance of isozyme phenotypes of Pinus merkusii. J. Trop. For. Sci. 8: 167-177.   Goto S, Thakur RC and Ishii K (1998). Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep. 18: 193-197. http://dx.doi.org/10.1007/s002990050555   Labra M, Grassi F, Sgorbati S and Ferrari C (2006). Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Pennines. Flora Morph. Distrib. Func. Ecol. Plants 201: 468-476. http://dx.doi.org/10.1016/j.flora.2005.10.004   Larionova AI, Iakhneva NV and Abaimov AP (2004). Genetic diversity and differentiation of Gmelin larch Larix gmelinii populations from Evenkia (Central Siberia). Genetika 40: 1370-1377. PMid:15575504   Lee SW, Ledig FT and Johnson DR (2002). Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. Am. J. Bot. 89: 566-577. http://dx.doi.org/10.3732/ajb.89.4.566 PMid:21665657   Li W (2004). Study on genetic diversity of Pinus sibirica du tour with ISSR-PCR. Northeast For. Univ.   Liu GF, Dong JX, Jiang Y, Lu YF, et al. (2005). Analysis of genetic relationship in 12 species of Section Strobus with ISSR markers. J. For. Res. 16: 213-215. http://dx.doi.org/10.1007/BF02856817   Majourhat K, Jabbar A, Hafidi A and Martínez-Gomez P (2008). Molecular characterization and genetic relationships among most common identified morphotypes of critically endangered rare Moroccan species Argania spinosa (Sapotaceae) using RAPD and SSR markers. Ann. For. Sci. 65: 805. http://dx.doi.org/10.1051/forest:2008069   Messaoud C, Afif M, Boulila A, Rejeb MN, et al. (2007). Genetic variation of Tunisian Myrtus communis L. (Myrtaceae) populations assessed by isozymes and RAPDs. Ann. For. Sci. 64: 845-853. http://dx.doi.org/10.1051/forest:2007061   Na D, Yang C and Jiang J (2006). Analysis on the genetic diversity of Larix gmelinii provenance by using ISSR markers. For. Sci. Tech. 31: 1-4.   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Oreshkova NV, Larionova AY, Milyutin LI and Abaimov AP (2006). Genetic diversity structure and differentiation of Gmelin Larch (Larix gmelinii (Rupr.) Rupr.) populations from Central Evenkia and Eastern Zabaikalje. Eurasian J. For. Res. 9-1: 1-8.   Porebski S, Bailey LG and Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. http://dx.doi.org/10.1007/BF02772108   Raymond PG and Ledig FT (1982). Genetic diversity and population structure in pitch pine (Pinus rigida mill.). Evolution 36: 387-402. http://dx.doi.org/10.2307/2408058   Shahraji TR, Kazempour MN and Adbesh Z (2009). Genetic (RAPD) diversity in loblolly pine unknown provenance plantation in Iran. Indian J. Hortic. 66: 35-38.   Wang MB and Gao FQ (2009). Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China. Biochem. Genet. 47: 154-164. http://dx.doi.org/10.1007/s10528-009-9225-7 PMid:19169805   Xue X, Wang Y, Korpelainen H and Li C (2007). Genetic diversity of Picea asperata populations based on RAPDs. Plant Biol. 9: 101-108. http://dx.doi.org/10.1055/s-2006-924455 PMid:17006797   Yang CP, Jiang J, Tang SS, Li JY, et al. (2002). The provenance test of 21-year Old Larix gmelinii at Maoershan area. J. Northeast For. Univ. 30: 6.   Yeh FC, Yang R and Boyle T (1999). POPGENE, Version 1.31, Microsoft Window-Based Freeware for Population Genetic Analysis. Centre for International Forestry Research, University of Alberta and Tim Boyle. Available at [http://www.ualberta.ca/~fyeh/popgene.pdf]. Accessed August 30, 1999.   Zemanová E, Jirku M, Mauricio IL, Miles MA, et al. (2004). Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. Am. J. Trop. Med. Hyg. 70: 613-617. PMid:15211001   Zhang HG, Wang H, Xiao Y and Zhang CF (2002). Population genetic diversity of Picea koraiensis with allozyme techniques. J. Northeast For. Univ. 30: 21-25.
2012
Y. W. Wang, Han, W. T., Jiang, M., Lu, C. X., Li, X. F., Zhang, X., and Li, J. X., A novel mutation of the MFN2 gene in a Chinese family with Charcot-Marie-Tooth disease, vol. 11. pp. 1454-1459, 2012.
Banchs I, Casasnovas C, Montero J, Martinez-Matos JA, et al. (2008). Two Spanish families with Charcot-Marie-Tooth type 2A: clinical, electrophysiological and molecular findings. Neuromuscul. Disord. 18: 974-978.http://dx.doi.org/10.1016/j.nmd.2008.09.006PMid:18996695Barisic N, Claeys KG, Sirotkovic-Skerlev M, Lofgren A, et al. (2008). Charcot-Marie-Tooth disease: a clinico-genetic confrontation. Ann. Hum. Genet. 72: 416-441.http://dx.doi.org/10.1111/j.1469-1809.2007.00412.xPMid:18215208Cartoni R and Martinou JC (2009). Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp. Neurol. 218: 268-273.http://dx.doi.org/10.1016/j.expneurol.2009.05.003PMid:19427854Chung KW, Kim SB, Park KD, Choi KG, et al. (2006). Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129: 2103-2118.http://dx.doi.org/10.1093/brain/awl174PMid:16835246Engelfried K, Vorgerd M, Hagedorn M, Haas G, et al. (2006). Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med. Genet. 7: 53.http://dx.doi.org/10.1186/1471-2350-7-53PMid:16762064 PMCid:1524942Honda S, Aihara T, Hontani M, Okubo K, et al. (2005). Mutational analysis of action of mitochondrial fusion factor mitofusin-2. J. Cell Sci. 118: 3153-3161.http://dx.doi.org/10.1242/jcs.02449PMid:15985463Kijima K, Numakura C, Izumino H, Umetsu K, et al. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot- Marie-Tooth neuropathy type 2A. Hum. Genet. 116: 23-27.http://dx.doi.org/10.1007/s00439-004-1199-2PMid:15549395Koshiba T, Detmer SA, Kaiser JT, Chen H, et al. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305: 858-862.http://dx.doi.org/10.1126/science.1099793PMid:15297672Nicolaou P, Zamba-Papanicolaou E, Koutsou P, Kleopa KA, et al. (2010). Charcot-Marie-Tooth disease in Cyprus: epidemiological, clinical and genetic characteristics. Neuroepidemiology 35: 171-177.http://dx.doi.org/10.1159/000314351PMid:20571287Rojo M, Legros F, Chateau D and Lombes A (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115: 1663-1674.PMid:11950885Santel A and Fuller MT (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114: 867-874.PMid:11181170Verhoeven K, Claeys KG, Zuchner S, Schroder JM, et al. (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129: 2093-2102.http://dx.doi.org/10.1093/brain/awl126PMid:16714318Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36: 449-451.http://dx.doi.org/10.1038/ng1341PMid:15064763
2010
X. Z. Kan, Li, X. F., Zhang, L. Q., Chen, L., Qian, C. J., Zhang, X. W., and Wang, L., Characterization of the complete mitochondrial genome of the Rock pigeon, Columba livia (Columbiformes: Columbidae), vol. 9, pp. 1234-1249, 2010.
Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780. http://dx.doi.org/10.1093/nar/27.8.1767 PMid:10101183 PMCid:148383   Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511. http://dx.doi.org/10.1016/0022-2836(86)90272-X   Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, et al. (2001). Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409: 704-707. http://dx.doi.org/10.1038/35055536 PMid:11217857   Gibb GC, Kardailsky O, Kimball RT, Braun EL, et al. (2007). Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24: 269-280. http://dx.doi.org/10.1093/molbev/msl158 PMid:17062634   Haddrath O and Baker AJ (2001). Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc. Biol. Sci. 268: 939-945. http://dx.doi.org/10.1098/rspb.2001.1587 PMid:11370967 PMCid:1088691   Hall AT (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.   Harlid A, Janke A and Arnason U (1998). The complete mitochondrial genome of Rhea americana and early avian divergences. J. Mol. Evol. 46: 669-679. http://dx.doi.org/10.1007/PL00006347 PMid:9608049   Harrison GL, McLenachan PA, Phillips MJ, Slack KE, et al. (2004). Four new avian mitochondrial genomes help get to basic evolutionary questions in the late cretaceous. Mol. Biol. Evol. 21: 974-983. http://dx.doi.org/10.1093/molbev/msh065 PMid:14739240   Hazkani-Covo E, Zeller RM and Martin W (2010). Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6: e1000834. http://dx.doi.org/10.1371/journal.pgen.1000834 PMid:20168995 PMCid:2820518   Howard R and Moore A (2003). The Howard and Moore Complete Checklist of the Birds of the World. 3rd edn. Christopher Helm, London.   L'Abbé D, Duhaime JF, Lang BF and Morais R (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J. Biol. Chem. 266: 10844-10850. PMid:1710214   Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036   Livezey BC and Zusi RL (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 149: 1-95. http://dx.doi.org/10.1111/j.1096-3642.2006.00293.x PMid:18784798 PMCid:2517308   Lohse M, Drechsel O and Bock R (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. http://dx.doi.org/10.1007/s00294-007-0161-y PMid:17957369   Lowe TM and Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. PMid:9023104 PMCid:146525   Mindell DP, Sorenson MD and Dimcheff DE (1998). Multiple independent origins of mitochondrial gene order in birds. Proc. Natl. Acad. Sci. U. S. A. 95: 10693-10697. http://dx.doi.org/10.1073/pnas.95.18.10693 PMid:9724766 PMCid:27957   Moore WS (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726. http://dx.doi.org/10.2307/2410325   Morgan-Richards M, Trewick SA, Bartosch-Harlid A, Kardailsky O, et al. (2008). Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evol. Biol. 8: 20. http://dx.doi.org/10.1186/1471-2148-8-20 PMid:18215323 PMCid:2259304   Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385. http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x PMid:11736810   Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim Genet. 36: 367-375. http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x PMid:16167978   Paton T, Haddrath O and Baker AJ (2002). Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc. Biol. Sci. 269: 839-846. http://dx.doi.org/10.1098/rspb.2002.1961 PMid:11958716 PMCid:1690957   Pereira SL, Johnson KP, Clayton DH and Baker AJ (2007). Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene. Syst. Biol. 56: 656-672. http://dx.doi.org/10.1080/10635150701549672 PMid:17661233   Perna NT and Kocher TD (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358. http://dx.doi.org/10.1007/BF01215182 PMid:7563121   Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, et al. (2009). Toward resolving deep neoaves phylogeny: data, signal enhancement, and priors. Mol. Biol. Evol. 26: 313-326. http://dx.doi.org/10.1093/molbev/msn248 PMid:18981298   Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462. http://dx.doi.org/10.1007/PL00006402 PMid:9767690   Rokas A, Williams BL, King N and Carroll SB (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804. http://dx.doi.org/10.1038/nature02053 PMid:14574403   Saccone C, Pesole G and Sbisa E (1991). The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33: 83-91. http://dx.doi.org/10.1007/BF02100199 PMid:1909377   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   San Mauro D, Garcia-Paris M and Zardoya R (2004). Phylogenetic relationships of discoglossid frogs (Amphibia: Anura: Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343: 357-366. http://dx.doi.org/10.1016/j.gene.2004.10.001 PMid:15588590   Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140. http://dx.doi.org/10.1016/S0378-1119(97)00404-6   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Shen X, Tian M, Liu Z, Cheng H, et al. (2009). Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439: 79-86. http://dx.doi.org/10.1016/j.gene.2009.03.008 PMid:19306915   Slack KE, Janke A, Penny D and Arnason U (2003). Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene 302: 43-52. http://dx.doi.org/10.1016/S0378111902010533 PMid:12527195   Slack KE, Jones CM, Ando T, Harrison GL, et al. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol. Biol. Evol. 23: 1144-1155. http://dx.doi.org/10.1093/molbev/msj124 PMid:16533822   Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13. http://dx.doi.org/10.1016/j.ympev.2006.06.002 PMid:16854605   Walberg MW and Clayton DA (1981). Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9: 5411-5421. http://dx.doi.org/10.1093/nar/9.20.5411 PMid:7301592 PMCid:327529   Wang C, Chen Q, Lu G, Xu J, et al. (2008). Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei): insight into its phylogenic position within Cyprinidae. Gene 424: 96-101. http://dx.doi.org/10.1016/j.gene.2008.07.011 PMid:18706492   Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216. http://dx.doi.org/10.1016/S0074-7696(08)62066-5   Wyman SK, Jansen RK and Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. http://dx.doi.org/10.1093/bioinformatics/bth352 PMid:15180927   Xia X and Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. http://dx.doi.org/10.1093/jhered/92.4.371 PMid:11535656
X. Z. Kan, Li, X. F., Lei, Z. P., Wang, M., Chen, L., Gao, H., and Yang, Z. Y., Complete mitochondrial genome of Cabot’s tragopan, Tragopan caboti (Galliformes: Phasianidae), vol. 9, pp. 1204-1216, 2010.
Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780. http://dx.doi.org/10.1093/nar/27.8.1767 PMid:10101183 PMCid:148383   Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511. http://dx.doi.org/10.1016/0022-2836(86)90272-X   Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, et al. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22: 495-532. http://dx.doi.org/10.1111/j.1096-0031.2006.00120.x   del Hoyo J, Elliot A and Sargatal J (1994). Handbook of the Birds of the World. Vol. 2. Lynx Editions, Barcelona, 434-557.   Deng WH and Zheng GM (2004). Landscape and habitat factors affecting Cabot's tragopan Tragopan caboti occurrence in habitat fragments. Biol. Conserv. 117: 25-32. http://dx.doi.org/10.1016/S0006-3207(03)00259-3   Dyke GJ, Gulas BE and Crowe TM (2003). Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters. Zoolog. J. Linnean Soc. 137: 227-244. http://dx.doi.org/10.1046/j.1096-3642.2003.00048.x   Guan X, Silva P, Gyenai KB, Xu J, et al. (2009). The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo. Anim. Genet. 40: 134-141. http://dx.doi.org/10.1111/j.1365-2052.2008.01810.x PMid:19067672 PMCid:2664387   He L, Dai B, Zeng B, Zhang X, et al. (2009). The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila rufipectus) and a phylogenetic analysis with related species. Gene 435: 23-28. http://dx.doi.org/10.1016/j.gene.2009.01.001 PMid:19393190   IUCN (2009). IUCN Red List of Threatened Species. Gland, Switzerland. Available at [http://www.iucnredlist.org]. Accessed November 9, 2009.   Kumazawa Y and Nishida M (1993). Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 37: 380-398. http://dx.doi.org/10.1007/BF00178868 PMid:7508516   L'Abbe D, Duhaime JF, Lang BF and Morais R (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J. Biol. Chem. 266: 10844-10850. PMid:1710214   Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036   Lohse M, Drechsel O and Bock R (2007). Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. http://dx.doi.org/10.1007/s00294-007-0161-y PMid:17957369   Lowe TM and Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. PMid:9023104 PMCid:146525   Mindell DP, Sorenson MD and Dimcheff DE (1998). An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol. Biol. Evol. 15: 1568-1571. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025884 PMid:12572620   Monroe BL and Sibley CG (1990). A World Checklist of Birds. Yale University Press, New Haven.   Moore WS (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726. http://dx.doi.org/10.2307/2410325   Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385. http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x PMid:11736810   Nishibori M, Tsudzuki M, Hayashi T, Yamamoto Y, et al. (2002). Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species. J. Hered. 93: 439-444. http://dx.doi.org/10.1093/jhered/93.6.439 PMid:12642645   Nishibori M, Hayashi T and Yasue H (2004). Complete nucleotide sequence of Numida meleagris (Helmeted guineafowl) mitochondrial genome. J. Poult. Sci. 41: 259-268. http://dx.doi.org/10.2141/jpsa.41.259   Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet. 36: 367-375. http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x PMid:16167978   Perna NT and Kocher TD (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358. http://dx.doi.org/10.1007/BF01215182 PMid:7563121   Quinn TW (1992). The genetic legacy of Mother Goose - phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol. Ecol. 1: 105-117. http://dx.doi.org/10.1111/j.1365-294X.1992.tb00162.x PMid:1344986   Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462. http://dx.doi.org/10.1007/PL00006402 PMid:9767690   Ruokonen M and Kvist L (2002). Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol. 23: 422-432. http://dx.doi.org/10.1016/S1055-7903(02)00021-0   Russell RD and Beckenbach AT (2008). Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J. Mol. Evol. 67: 682-695. http://dx.doi.org/10.1007/s00239-008-9179-0 PMid:19030769 PMCid:2706983   Saccone C, Pesole G and Sbisa E (1991). The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33: 83-91. http://dx.doi.org/10.1007/BF02100199 PMid:1909377   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   San Mauro D, Garcia-Paris M and Zardoya R (2004). Phylogenetic relationships of discoglossid frogs (Amphibia:Anura:Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343: 357- 366. http://dx.doi.org/10.1016/j.gene.2004.10.001 PMid:15588590   Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140. http://dx.doi.org/10.1016/S0378-1119(97)00404-6   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Shen X, Tian M, Liu Z, Cheng H, et al. (2009a). Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439: 79-86. http://dx.doi.org/10.1016/j.gene.2009.03.008 PMid:19306915   Shen YY, Shi P, Sun YB and Zhang YP (2009b). Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 19: 1760-1765. http://dx.doi.org/10.1101/gr.093138.109 PMid:19617397 PMCid:2765268   Slack KE, Janke A, Penny D and Arnason U (2003). Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene 302: 43-52. http://dx.doi.org/10.1016/S0378111902010533 PMid:12527195   Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13. http://dx.doi.org/10.1016/j.ympev.2006.06.002 PMid:16854605   Walberg MW and Clayton DA (1981). Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9: 5411-5421. http://dx.doi.org/10.1093/nar/9.20.5411 PMid:7301592 PMCid:327529   Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216. http://dx.doi.org/10.1016/S0074-7696(08)62066-5   Wyman SK, Jansen RK and Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. http://dx.doi.org/10.1093/bioinformatics/bth352 PMid:15180927   Zhang JF, Nie LW, Wang Y and Hu LL (2009). The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene 442: 119-127. http://dx.doi.org/10.1016/j.gene.2009.04.018 PMid:19397958   Zhang Y and Zheng G (2007). A population viability analysis (PVA) for Cabot's tragopan (Tragopan caboti) in Wuyanling, south-east China. Bird Conserv. Int. 17: 151-161. http://dx.doi.org/10.1017/S0959270907000652
L. P. Sun, Ma, X. L., Liu, H. X., Wang, Y. S., and Li, X. F., No association of polymorphisms in the suppressor of cytokine signaling (SOCS)-3 with rheumatoid arthritis in the Chinese Han population, vol. 9, pp. 1518-1524, 2010.
Alexander WS (2002). Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2: 410-416. PMid:12093007   Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, et al. (2004). Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350: 2572-2581. http://dx.doi.org/10.1056/NEJMoa032534 PMid:15201414   Egan PJ, Lawlor KE, Alexander WS and Wicks IP (2003). Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J. Clin. Invest. 111: 915-924. PMid:12639998 PMCid:153765   Firestein GS and Zvaifler NJ (1997). Anticytokine therapy in rheumatoid arthritis. N. Engl. J. Med. 337: 195-197. http://dx.doi.org/10.1056/NEJM199707173370310 PMid:9219708   Gatto L, Berlato C, Poli V, Tininini S, et al. (2004). Analysis of SOCS-3 promoter responses to interferon gamma. J. Biol. Chem. 279: 13746-13754. http://dx.doi.org/10.1074/jbc.M308999200 PMid:14742442   GMSTF (2005). Genomatix MatInspector Search for Transcription Factor Binding Sites. Available at [http://www.genomatix.de/online_help/help_matinspector/matinspector_help.html]. Acessed December 10, 2009.   Gylvin T, Nolsoe R, Hansen T, Nielsen EM, et al. (2004). Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in type 1 diabetes and insulin sensitivity. Diabetologia 47: 1273-1277. http://dx.doi.org/10.1007/s00125-004-1440-5 PMid:15249995   Hölter K, Wermter AK, Scherag A, Siegfried W, et al. (2007). Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents. BMC Med. Genet. 8: 21. http://dx.doi.org/10.1186/1471-2350-8-21 PMid:17445271 PMCid:1866222   Isomaki P, Alanara T, Isohanni P, Lagerstedt A, et al. (2007). The expression of SOCS is altered in rheumatoid arthritis. Rheumatology 46: 1538-1546. http://dx.doi.org/10.1093/rheumatology/kem198 PMid:17726036   Jamshidi Y, Snieder H, Wang X, Spector TD, et al. (2006). Common polymorphisms in SOCS3 are not associated with body weight, insulin sensitivity or lipid profile in normal female twins. Diabetologia 49: 306-310. http://dx.doi.org/10.1007/s00125-005-0093-3 PMid:16402267 PMCid:1364534   Maini R, St Clair EW, Breedveld F, Furst D, et al. (1999). Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354: 1932-1939. http://dx.doi.org/10.1016/S0140-6736(99)05246-0   Paul C, Seiliez I, Thissen JP and Le Cam A (2000). Regulation of expression of the rat SOCS-3 gene in hepatocytes by growth hormone, interleukin-6 and glucocorticoids mRNA analysis and promoter characterization. Eur. J. Biochem. 267: 5849-5857. http://dx.doi.org/10.1046/j.1432-1327.2000.01395.x PMid:10998044   Rahman A (2007). Regulators of cytokine signalling in rheumatoid arthritis. Rheumatology 46: 1745-1746. http://dx.doi.org/10.1093/rheumatology/kem285 PMid:17986480   Rottapel R (2001). Putting the brakes on arthritis: can suppressors of cytokine signaling (SOCS) suppress rheumatoid arthritis? J. Clin. Invest. 108: 1745-1747. PMid:11748257 PMCid:209478   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Shouda T, Yoshida T, Hanada T, Wakioka T, et al. (2001). Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108: 1781-1788. PMid:11748261 PMCid:209467   Smolen JS and Steiner G (2003). Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2: 473-488. http://dx.doi.org/10.1038/nrd1109 PMid:12776222   Starr R, Willson TA, Viney EM, Murray LJ, et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387: 917-921. http://dx.doi.org/10.1038/43206 PMid:9202125   Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, et al. (1999). A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340: 253-259. http://dx.doi.org/10.1056/NEJM199901283400401 PMid:9920948   Weinblatt ME, Keystone EC, Furst DE, Moreland LW, et al. (2003). Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48: 35-45. http://dx.doi.org/10.1002/art.10697 PMid:12528101   Wong PK, Egan PJ, Croker BA, O'Donnell K, et al. (2006). SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J. Clin. Invest. 116: 1571-1581. http://dx.doi.org/10.1172/JCI25660 PMid:16710471 PMCid:1462939