Publications

Found 4 results
Filters: Author is H.X. Liu  [Clear All Filters]
2016
H. X. Liu, Li, J., Ye, B. G., Liu, H. X., Li, J., and Ye, B. G., Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by Planning of Science and Technology in Guangdong Province (#2016A020215162) and Planning of Science and Technology in Guangzhou City (#2104YZ-00062). REFERENCESAbbas M, Srivastava K, Imran M, Banerjee M, et al (2014). Association of CYP1A1 gene variants rs4646903 (T>C) and rs1048943 (A>G) with cervical cancer in a North Indian population. Eur. J. Obstet. Gynecol. Reprod. Biol. 176: 68-74. http://dx.doi.org/10.1016/j.ejogrb.2014.02.036 Abdull Razis AF, Konsue N, Ioannides C, et al (2015). Inhibitory effect of phenethyl isothiocyanate against benzo[a] pyrene-induced rise in CYP1A1 mRNA and apoprotein levels as its chemopreventive properties. Asian Pac. J. Cancer Prev. 16: 2679-2683. http://dx.doi.org/10.7314/APJCP.2015.16.7.2679 BroshRMJret al. (2013). DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer 13: 542-558. http://dx.doi.org/10.1038/nrc3560 Chen B, Zhou Y, Yang P, Wu XT, et al (2012). Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol. Biol. Rep. 39: 1305-1313. http://dx.doi.org/10.1007/s11033-011-0863-6 Choi JR, Park SY, Noh OK, Koh YW, et al (2016). Gene mutation discovery research of non-smoking lung cancer patients due to indoor radon exposure. Ann. Occup. Environ. Med. 28: 13. http://dx.doi.org/10.1186/s40557-016-0095-2 García-González MA, Quintero E, Bujanda L, Nicolás D, et al (2012). Relevance of GSTM1, GSTT1, and GSTP1 gene polymorphisms to gastric cancer susceptibility and phenotype. Mutagenesis 27: 771-777. http://dx.doi.org/10.1093/mutage/ges049 Ghoshal U, Tripathi S, Kumar S, Mittal B, et al (2014). Genetic polymorphism of cytochrome P450 (CYP) 1A1, CYP1A2, and CYP2E1 genes modulate susceptibility to gastric cancer in patients with Helicobacter pylori infection. Gastric Cancer 17: 226-234. http://dx.doi.org/10.1007/s10120-013-0269-3 Hecht SS, Carmella SG, Chen M, Dor Koch JF, et al (1999). Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. Cancer Res. 59: 590-596. Hecht SS, Carmella SG, Murphy SE, Stepanov I, et al (2016). Tobacco smoke toxicant and carcinogen biomarkers and lung cancer susceptibility in smokers. J. Thorac. Oncol. 11: S7-S8. http://dx.doi.org/10.1016/j.jtho.2015.12.011 Hezova R, Bienertova-Vasku J, Sachlova M, Brezkova V, et al (2012). Common polymorphisms in GSTM1, GSTT1, GSTP1, GSTA1 and susceptibility to colorectal cancer in the Central European population. Eur. J. Med. Res. 17: 17. http://dx.doi.org/10.1186/2047-783X-17-17 Huang G, Cai S, Wang W, Zhang Q, et al (2013). Association between XRCC1 and XRCC3 polymorphisms with lung cancer risk: a meta-analysis from case-control studies. PLoS One 8: e68457. http://dx.doi.org/10.1371/journal.pone.0068457 Ibarrola-Villava M, Martin-Gonzalez M, Lazaro P, Pizarro A, et al (2012). Role of glutathione S-transferases in melanoma susceptibility: association with GSTP1 rs1695 polymorphism. Br. J. Dermatol. 166: 1176-1183. http://dx.doi.org/10.1111/j.1365-2133.2012.10831.x Kiyohara C, Horiuchi T, Takayama K, Nakanishi Y, et al (2012). Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J. Thorac. Oncol. 7: 954-962. http://dx.doi.org/10.1097/JTO.0b013e31824de30f Li D, Dandara C, Parker MI, et al (2010). The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet. 11: 47. http://dx.doi.org/10.1186/1471-2156-11-47 Li W, Li K, Zhao L, Zou H, et al (2014). DNA repair pathway genes and lung cancer susceptibility: a meta-analysis. Gene 538: 361-365. http://dx.doi.org/10.1016/j.gene.2013.12.028 Liu XL, Liu LD, Zhang SG, Dai SD, et al (2015). Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer. Genet. Mol. Res. 14: 13496-13503. http://dx.doi.org/10.4238/2015.October.28.10 Malvezzi M, Bosetti C, Rosso T, Bertuccio P, et al (2013). Lung cancer mortality in European men: trends and predictions. Lung Cancer 80: 138-145. http://dx.doi.org/10.1016/j.lungcan.2013.01.020 Malvezzi M, Bertuccio P, Rosso T, Rota M, et al (2015). European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann. Oncol. 26: 779-786. http://dx.doi.org/10.1093/annonc/mdv001 Mota P, Silva HC, Soares MJ, Pego A, et al (2015). Genetic polymorphisms of phase I and phase II metabolic enzymes as modulators of lung cancer susceptibility. J. Cancer Res. Clin. Oncol. 141: 851-860. http://dx.doi.org/10.1007/s00432-014-1868-z Qian B, Zhang H, Zhang L, Zhou X, et al (2011). Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer 73: 138-146. http://dx.doi.org/10.1016/j.lungcan.2010.11.018 Wang M, Chu H, Zhang Z, Wei Q, et al (2013). Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer. J. Biomed. Res. 27: 179-192. http://dx.doi.org/10.7555/JBR.27.20130034 Xu CH, Wang Q, Qian Q, Zhan P, et al (2013). CYP1A1 exon7 polymorphism is associated with lung cancer risk among the female population and among smokers: a meta-analysis. Tumour Biol. 34: 3901-3911. http://dx.doi.org/10.1007/s13277-013-0978-6 Zhao Y, Wang B, Hu K, Wang J, et al (2015). Glutathione S-transferase θ1 polymorphism contributes to lung cancer susceptibility: A meta-analysis of 26 case-control studies. Oncol. Lett. 9: 1947-1953.  
H. X. Liu, Li, J., Ye, B. G., Liu, H. X., Li, J., and Ye, B. G., Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by Planning of Science and Technology in Guangdong Province (#2016A020215162) and Planning of Science and Technology in Guangzhou City (#2104YZ-00062). REFERENCESAbbas M, Srivastava K, Imran M, Banerjee M, et al (2014). Association of CYP1A1 gene variants rs4646903 (T>C) and rs1048943 (A>G) with cervical cancer in a North Indian population. Eur. J. Obstet. Gynecol. Reprod. Biol. 176: 68-74. http://dx.doi.org/10.1016/j.ejogrb.2014.02.036 Abdull Razis AF, Konsue N, Ioannides C, et al (2015). Inhibitory effect of phenethyl isothiocyanate against benzo[a] pyrene-induced rise in CYP1A1 mRNA and apoprotein levels as its chemopreventive properties. Asian Pac. J. Cancer Prev. 16: 2679-2683. http://dx.doi.org/10.7314/APJCP.2015.16.7.2679 BroshRMJret al. (2013). DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer 13: 542-558. http://dx.doi.org/10.1038/nrc3560 Chen B, Zhou Y, Yang P, Wu XT, et al (2012). Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol. Biol. Rep. 39: 1305-1313. http://dx.doi.org/10.1007/s11033-011-0863-6 Choi JR, Park SY, Noh OK, Koh YW, et al (2016). Gene mutation discovery research of non-smoking lung cancer patients due to indoor radon exposure. Ann. Occup. Environ. Med. 28: 13. http://dx.doi.org/10.1186/s40557-016-0095-2 García-González MA, Quintero E, Bujanda L, Nicolás D, et al (2012). Relevance of GSTM1, GSTT1, and GSTP1 gene polymorphisms to gastric cancer susceptibility and phenotype. Mutagenesis 27: 771-777. http://dx.doi.org/10.1093/mutage/ges049 Ghoshal U, Tripathi S, Kumar S, Mittal B, et al (2014). Genetic polymorphism of cytochrome P450 (CYP) 1A1, CYP1A2, and CYP2E1 genes modulate susceptibility to gastric cancer in patients with Helicobacter pylori infection. Gastric Cancer 17: 226-234. http://dx.doi.org/10.1007/s10120-013-0269-3 Hecht SS, Carmella SG, Chen M, Dor Koch JF, et al (1999). Quantitation of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. Cancer Res. 59: 590-596. Hecht SS, Carmella SG, Murphy SE, Stepanov I, et al (2016). Tobacco smoke toxicant and carcinogen biomarkers and lung cancer susceptibility in smokers. J. Thorac. Oncol. 11: S7-S8. http://dx.doi.org/10.1016/j.jtho.2015.12.011 Hezova R, Bienertova-Vasku J, Sachlova M, Brezkova V, et al (2012). Common polymorphisms in GSTM1, GSTT1, GSTP1, GSTA1 and susceptibility to colorectal cancer in the Central European population. Eur. J. Med. Res. 17: 17. http://dx.doi.org/10.1186/2047-783X-17-17 Huang G, Cai S, Wang W, Zhang Q, et al (2013). Association between XRCC1 and XRCC3 polymorphisms with lung cancer risk: a meta-analysis from case-control studies. PLoS One 8: e68457. http://dx.doi.org/10.1371/journal.pone.0068457 Ibarrola-Villava M, Martin-Gonzalez M, Lazaro P, Pizarro A, et al (2012). Role of glutathione S-transferases in melanoma susceptibility: association with GSTP1 rs1695 polymorphism. Br. J. Dermatol. 166: 1176-1183. http://dx.doi.org/10.1111/j.1365-2133.2012.10831.x Kiyohara C, Horiuchi T, Takayama K, Nakanishi Y, et al (2012). Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J. Thorac. Oncol. 7: 954-962. http://dx.doi.org/10.1097/JTO.0b013e31824de30f Li D, Dandara C, Parker MI, et al (2010). The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of oesophageal cancer. BMC Genet. 11: 47. http://dx.doi.org/10.1186/1471-2156-11-47 Li W, Li K, Zhao L, Zou H, et al (2014). DNA repair pathway genes and lung cancer susceptibility: a meta-analysis. Gene 538: 361-365. http://dx.doi.org/10.1016/j.gene.2013.12.028 Liu XL, Liu LD, Zhang SG, Dai SD, et al (2015). Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer. Genet. Mol. Res. 14: 13496-13503. http://dx.doi.org/10.4238/2015.October.28.10 Malvezzi M, Bosetti C, Rosso T, Bertuccio P, et al (2013). Lung cancer mortality in European men: trends and predictions. Lung Cancer 80: 138-145. http://dx.doi.org/10.1016/j.lungcan.2013.01.020 Malvezzi M, Bertuccio P, Rosso T, Rota M, et al (2015). European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann. Oncol. 26: 779-786. http://dx.doi.org/10.1093/annonc/mdv001 Mota P, Silva HC, Soares MJ, Pego A, et al (2015). Genetic polymorphisms of phase I and phase II metabolic enzymes as modulators of lung cancer susceptibility. J. Cancer Res. Clin. Oncol. 141: 851-860. http://dx.doi.org/10.1007/s00432-014-1868-z Qian B, Zhang H, Zhang L, Zhou X, et al (2011). Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer 73: 138-146. http://dx.doi.org/10.1016/j.lungcan.2010.11.018 Wang M, Chu H, Zhang Z, Wei Q, et al (2013). Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer. J. Biomed. Res. 27: 179-192. http://dx.doi.org/10.7555/JBR.27.20130034 Xu CH, Wang Q, Qian Q, Zhan P, et al (2013). CYP1A1 exon7 polymorphism is associated with lung cancer risk among the female population and among smokers: a meta-analysis. Tumour Biol. 34: 3901-3911. http://dx.doi.org/10.1007/s13277-013-0978-6 Zhao Y, Wang B, Hu K, Wang J, et al (2015). Glutathione S-transferase θ1 polymorphism contributes to lung cancer susceptibility: A meta-analysis of 26 case-control studies. Oncol. Lett. 9: 1947-1953.  
2010
L. P. Sun, Ma, X. L., Liu, H. X., Wang, Y. S., and Li, X. F., No association of polymorphisms in the suppressor of cytokine signaling (SOCS)-3 with rheumatoid arthritis in the Chinese Han population, vol. 9, pp. 1518-1524, 2010.
Alexander WS (2002). Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2: 410-416. PMid:12093007   Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, et al. (2004). Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350: 2572-2581. http://dx.doi.org/10.1056/NEJMoa032534 PMid:15201414   Egan PJ, Lawlor KE, Alexander WS and Wicks IP (2003). Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J. Clin. Invest. 111: 915-924. PMid:12639998 PMCid:153765   Firestein GS and Zvaifler NJ (1997). Anticytokine therapy in rheumatoid arthritis. N. Engl. J. Med. 337: 195-197. http://dx.doi.org/10.1056/NEJM199707173370310 PMid:9219708   Gatto L, Berlato C, Poli V, Tininini S, et al. (2004). Analysis of SOCS-3 promoter responses to interferon gamma. J. Biol. Chem. 279: 13746-13754. http://dx.doi.org/10.1074/jbc.M308999200 PMid:14742442   GMSTF (2005). Genomatix MatInspector Search for Transcription Factor Binding Sites. Available at [http://www.genomatix.de/online_help/help_matinspector/matinspector_help.html]. Acessed December 10, 2009.   Gylvin T, Nolsoe R, Hansen T, Nielsen EM, et al. (2004). Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in type 1 diabetes and insulin sensitivity. Diabetologia 47: 1273-1277. http://dx.doi.org/10.1007/s00125-004-1440-5 PMid:15249995   Hölter K, Wermter AK, Scherag A, Siegfried W, et al. (2007). Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents. BMC Med. Genet. 8: 21. http://dx.doi.org/10.1186/1471-2350-8-21 PMid:17445271 PMCid:1866222   Isomaki P, Alanara T, Isohanni P, Lagerstedt A, et al. (2007). The expression of SOCS is altered in rheumatoid arthritis. Rheumatology 46: 1538-1546. http://dx.doi.org/10.1093/rheumatology/kem198 PMid:17726036   Jamshidi Y, Snieder H, Wang X, Spector TD, et al. (2006). Common polymorphisms in SOCS3 are not associated with body weight, insulin sensitivity or lipid profile in normal female twins. Diabetologia 49: 306-310. http://dx.doi.org/10.1007/s00125-005-0093-3 PMid:16402267 PMCid:1364534   Maini R, St Clair EW, Breedveld F, Furst D, et al. (1999). Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354: 1932-1939. http://dx.doi.org/10.1016/S0140-6736(99)05246-0   Paul C, Seiliez I, Thissen JP and Le Cam A (2000). Regulation of expression of the rat SOCS-3 gene in hepatocytes by growth hormone, interleukin-6 and glucocorticoids mRNA analysis and promoter characterization. Eur. J. Biochem. 267: 5849-5857. http://dx.doi.org/10.1046/j.1432-1327.2000.01395.x PMid:10998044   Rahman A (2007). Regulators of cytokine signalling in rheumatoid arthritis. Rheumatology 46: 1745-1746. http://dx.doi.org/10.1093/rheumatology/kem285 PMid:17986480   Rottapel R (2001). Putting the brakes on arthritis: can suppressors of cytokine signaling (SOCS) suppress rheumatoid arthritis? J. Clin. Invest. 108: 1745-1747. PMid:11748257 PMCid:209478   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Shouda T, Yoshida T, Hanada T, Wakioka T, et al. (2001). Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108: 1781-1788. PMid:11748261 PMCid:209467   Smolen JS and Steiner G (2003). Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2: 473-488. http://dx.doi.org/10.1038/nrd1109 PMid:12776222   Starr R, Willson TA, Viney EM, Murray LJ, et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387: 917-921. http://dx.doi.org/10.1038/43206 PMid:9202125   Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, et al. (1999). A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340: 253-259. http://dx.doi.org/10.1056/NEJM199901283400401 PMid:9920948   Weinblatt ME, Keystone EC, Furst DE, Moreland LW, et al. (2003). Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48: 35-45. http://dx.doi.org/10.1002/art.10697 PMid:12528101   Wong PK, Egan PJ, Croker BA, O'Donnell K, et al. (2006). SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J. Clin. Invest. 116: 1571-1581. http://dx.doi.org/10.1172/JCI25660 PMid:16710471 PMCid:1462939