Publications

Found 2 results
Filters: Author is F. Ding  [Clear All Filters]
2012
Q. Zhang, Ding, M., Gao, X. R., and Ding, F., Pyrroloquinoline quinone rescues hippocampal neurons from glutamate-induced cell death through activation of Nrf2 and up-regulation of antioxidant genes, vol. 11, pp. 2652-2664, 2012.
Aizenman E, Hartnett KA, Zhong C, Gallop PM, et al. (1992). Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site. J. Neurosci. 12: 2362-2369. PMid:1318959   Bauerly KA, Storms DH, Harris CB, Hajizadeh S, et al. (2006). Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat. Biochim. Biophys. Acta 1760: 1741- 1748. http://dx.doi.org/10.1016/j.bbagen.2006.07.009 PMid:17029795   Biswas M and Chan JY (2010). Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol. 244: 16-20. http://dx.doi.org/10.1016/j.taap.2009.07.034 PMid:19665035 PMCid:2837788   Blank V (2008). Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J. Mol. Biol. 376: 913-925. http://dx.doi.org/10.1016/j.jmb.2007.11.074 PMid:18201722   Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, et al. (2010). Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 285: 142-152. http://dx.doi.org/10.1074/jbc.M109.030130 PMid:19861415 PMCid:2804159   Cross DA, Alessi DR, Cohen P, Andjelkovich M, et al. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785-789. http://dx.doi.org/10.1038/378785a0 PMid:8524413   Dhakshinamoorthy S, Long DJ and Jaiswal AK (2000). Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr. Top. Cell Regul. 36: 201-216. http://dx.doi.org/10.1016/S0070-2137(01)80009-1   Franklin CC, Backos DS, Mohar I, White CC, et al. (2009). Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med. 30: 86-98. http://dx.doi.org/10.1016/j.mam.2008.08.009 PMid:18812186 PMCid:2714364   Griffith OW and Mulcahy RT (1999). The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 73: 209-67, xii. http://dx.doi.org/10.1002/9780470123195.ch7 PMid:10218110   Hara H, Hiramatsu H and Adachi T (2007). Pyrroloquinoline quinone is a potent neuroprotective nutrient against 6-hydroxydopamine-induced neurotoxicity. Neurochem. Res. 32: 489-495. http://dx.doi.org/10.1007/s11064-006-9257-x PMid:17268846   Hirakawa A, Shimizu K, Fukumitsu H and Furukawa S (2009). Pyrroloquinoline quinone attenuates iNOS gene expression in the injured spinal cord. Biochem. Biophys. Res. Commun. 378: 308-312. http://dx.doi.org/10.1016/j.bbrc.2008.11.045 PMid:19026989   Huang HC, Nguyen T and Pickett CB (2002). Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 277: 42769-42774. http://dx.doi.org/10.1074/jbc.M206911200 PMid:12198130   Ishii T, Itoh K, Takahashi S, Sato H, et al. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275: 16023-16029. http://dx.doi.org/10.1074/jbc.275.21.16023 PMid:10821856   Itoh K, Chiba T, Takahashi S, Ishii T, et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-322. http://dx.doi.org/10.1006/bbrc.1997.6943 PMid:9240432   Jung KA and Kwak MK (2010). The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15: 7266-7291. http://dx.doi.org/10.3390/molecules15107266 PMid:20966874   Kaspar JW, Niture SK and Jaiswal AK (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47: 1304-1309. http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035 PMid:19666107 PMCid:2763938   Kumazawa T, Hiwasa T, Takiguchi M, Suzuki O, et al. (2007). Activation of Ras signaling pathways by pyrroloquinoline quinone in NIH3T3 mouse fibroblasts. Int. J. Mol. Med. 19: 765-770. PMid:17390081   Kwong M, Kan YW and Chan JY (1999). The CNC basic leucine zipper factor, Nrf1, is essential for cell survival in response to oxidative stress-inducing agents. Role for Nrf1 in gamma-gcs(l) and gss expression in mouse fibroblasts. J. Biol. Chem. 274: 37491-37498. http://dx.doi.org/10.1074/jbc.274.52.37491 PMid:10601325   Lee JM and Johnson JA (2004). An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37: 139-143. http://dx.doi.org/10.5483/BMBRep.2004.37.2.139 PMid:15469687   Liu S, Li H, Ou YJ, Peng H, et al. (2005). Enhanced rat sciatic nerve regeneration through silicon tubes filled with pyrroloquinoline quinone. Microsurgery 25: 329-337. http://dx.doi.org/10.1002/micr.20126 PMid:15915445   Mebratu Y and Tesfaigzi Y (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8: 1168-1175. http://dx.doi.org/10.4161/cc.8.8.8147 PMid:19282669 PMCid:2728430   Meister A and Anderson ME (1983). Glutathione. Annu. Rev. Biochem. 52: 711-760. http://dx.doi.org/10.1146/annurev.bi.52.070183.003431 PMid:6137189   Misra HS, Khairnar NP, Barik A, Indira PK, et al. (2004). Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett. 578: 26-30. http://dx.doi.org/10.1016/j.febslet.2004.10.061 PMid:15581610   Motohashi H, O'Connor T, Katsuoka F, Engel JD, et al. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294: 1-12. http://dx.doi.org/10.1016/S0378-1119(02)00788-6   Murase K, Hattori A, Kohno M and Hayashi K (1993). Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem. Mol. Biol. Int. 30: 615-621. PMid:8401318   Niture SK, Kaspar JW, Shen J and Jaiswal AK (2010). Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol. 244: 37-42. http://dx.doi.org/10.1016/j.taap.2009.06.009 PMid:19538984 PMCid:2837794   Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, et al. (2008). Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J. Biol. Chem. 283: 33554-33562. http://dx.doi.org/10.1074/jbc.M804597200 PMid:18826952 PMCid:2662273   Pap M and Cooper GM (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem. 273: 19929-19932. http://dx.doi.org/10.1074/jbc.273.32.19929 PMid:9685326   Poss KD and Tonegawa S (1997). Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl. Acad. Sci. U. S. A. 94: 10925-10930. http://dx.doi.org/10.1073/pnas.94.20.10925 PMid:9380736 PMCid:23533   Rojo AI, Rada P, Egea J, Rosa AO, et al. (2008). Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol. Cell Neurosci. 39: 125-132. http://dx.doi.org/10.1016/j.mcn.2008.06.007 PMid:18619545   Rucker R, Chowanadisai W and Nakano M (2009). Potential physiological importance of pyrroloquinoline quinone. Altern. Med. Rev. 14: 268-277. PMid:19803551   Salazar M, Rojo AI, Velasco D, de Sagarra RM, et al. (2006). Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J. Biol. Chem. 281: 14841-14851. http://dx.doi.org/10.1074/jbc.M513737200 PMid:16551619   Satoh T, Baba M, Nakatsuka D, Ishikawa Y, et al. (2003). Role of heme oxygenase-1 protein in the neuroprotective effects of cyclopentenone prostaglandin derivatives under oxidative stress. Eur. J. Neurosci. 17: 2249-2255. http://dx.doi.org/10.1046/j.1460-9568.2003.02688.x PMid:12814358   Scanlon JM, Aizenman E and Reynolds IJ (1997). Effects of pyrroloquinoline quinone on glutamate-induced production of reactive oxygen species in neurons. Eur. J. Pharmacol. 326: 67-74. http://dx.doi.org/10.1016/S0014-2999(97)00137-4   Shih AY, Li P and Murphy TH (2005). A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci. 25: 10321-10335. http://dx.doi.org/10.1523/JNEUROSCI.4014-05.2005 PMid:16267240   Stites T, Storms D, Bauerly K, Mah J, et al. (2006). Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J. Nutr. 136: 390-396. PMid:16424117   Suh JH, Shenvi SV, Dixon BM, Liu H, et al. (2004). Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U. S. A. 101: 3381-3386. http://dx.doi.org/10.1073/pnas.0400282101 PMid:14985508 PMCid:373470   Yang YC, Lii CK, Lin AH, Yeh YW, et al. (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic. Biol. Med. 51: 2073-2081. http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.007 PMid:21964506   Zhang Q, Shen M, Ding M, Shen D, et al. (2011). The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway. Toxicol. Appl. Pharmacol. 252: 62-72. http://dx.doi.org/10.1016/j.taap.2011.02.006 PMid:21320517   Zhang Y, Feustel PJ and Kimelberg HK (2006). Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res. 1094: 200-206. http://dx.doi.org/10.1016/j.brainres.2006.03.111 PMid:16709402   Zhu BQ, Simonis U, Cecchini G, Zhou HZ, et al. (2006). Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 11: 119-128. http://dx.doi.org/10.1177/1074248406288757 PMid:16891289
2010
Y. Liu, Zhou, Y. L., Qian, Y. Y., Wang, Y. J., Ding, F., Gu, X. S., and Liu, M., The noggin2 gene of Gekko japonicus (Gekkonidae) is down-regulated in the spinal cord after tail amputation, vol. 9, pp. 1606-1614, 2010.
Alibardi L (1995). Muscle differentiation and morphogenesis in the regenerating tail of lizards. J. Anat. 186: 143-151. PMid:7649809 PMCid:1167280   Aspenberg P, Jeppsson C and Economides AN (2001). The bone morphogenetic proteins antagonist noggin inhibits membranous ossification. J. Bone Miner. Res. 16: 497-500. http://dx.doi.org/10.1359/jbmr.2001.16.3.497 PMid:11277267   Bachiller D, Klingensmith J, Kemp C, Belo JA, et al. (2000). The organizer factors chordin and noggin are required for mouse forebrain development. Nature 403: 658-661. http://dx.doi.org/10.1038/35001072 PMid:10688202   Brockes JP (1997). Amphibian limb regeneration: rebuilding a complex structure. Science 276: 81-87. http://dx.doi.org/10.1126/science.276.5309.81 PMid:9082990   Chernoff EA, Stocum DL, Nye HL and Cameron JA (2003). Urodele spinal cord regeneration and related processes. Dev. Dyn. 226: 295-307. http://dx.doi.org/10.1002/dvdy.10240 PMid:12557207   Echeverri K and Tanaka EM (2002). Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298: 1993-1996. http://dx.doi.org/10.1126/science.1077804 PMid:12471259   Egar M, Simpson SB and Singer M (1970). The growth and differentiation of the regenerating spinal cord of the lizard, Anolis carolinensis. J. Morphol. 131: 131-151. http://dx.doi.org/10.1002/jmor.1051310202 PMid:5425076   Eroshkin FM, Ermakova GV, Bayramov AV and Zaraisky AG (2006). Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis. Gene Expr. Patterns 6: 180-186. http://dx.doi.org/10.1016/j.modgep.2005.06.007 PMid:16168719   Fletcher RB, Watson AL and Harland RM (2004). Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns 5: 225-230. http://dx.doi.org/10.1016/j.modgep.2004.08.001 PMid:15567718   Fürthauer M, Thisse B and Thisse C (1999). Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 214: 181-196. http://dx.doi.org/10.1006/dbio.1999.9401 PMid:10491267   Kulessa H, Turk G and Hogan BL (2000). Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 19: 6664-6674. http://dx.doi.org/10.1093/emboj/19.24.6664 PMid:11118201 PMCid:305899   Lamb TM, Knecht AK, Smith WC, Stachel SE, et al. (1993). Neural induction by the secreted polypeptide noggin. Science 262: 713-718. http://dx.doi.org/10.1126/science.8235591 PMid:8235591   Liu Y, Ding F, Liu M, Jiang M, et al. (2006). EST-based identification of genes expressed in brain and spinal cord of Gekko japonicus, a species demonstrating intrinsic capacity of spinal cord regeneration. J. Mol. Neurosci. 29: 21-28. http://dx.doi.org/10.1385/JMN:29:1:21   McMahon JA, Takada S, Zimmerman LB, Fan CM, et al. (1998). Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12: 1438-1452. http://dx.doi.org/10.1101/gad.12.10.1438 PMid:9585504 PMCid:316831   Reddi AH (2001). Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res. 3: 1-5. http://dx.doi.org/10.1186/ar133 PMid:11178121 PMCid:128877   Simpson SB Jr (1968). Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J. Comp. Neurol. 134: 193-210. http://dx.doi.org/10.1002/cne.901340207 PMid:5712416   Smith WC and Harland RM (1992). Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829-840. http://dx.doi.org/10.1016/0092-8674(92)90316-5   Valenzuela DM, Economides AN, Rojas E, Lamb TM, et al. (1995). Identification of mammalian noggin and its expression in the adult nervous system. J. Neurosci. 15: 6077-6084. PMid:7666191   Zimmerman LB, De Jesus-Escobar JM and Harland RM (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599-606. http://dx.doi.org/10.1016/S0092-8674(00)80133-6