Publications

Found 31 results
Filters: Author is M. Wang  [Clear All Filters]
2016
X. - H. Yin, Wu, Q. - J., Zhang, Y. - J., Long, Y. - H., Wu, X. - M., Li, R. - Y., Wang, M., Tian, X. - L., Jiao, X. - G., Yin, X. - H., Wu, Q. - J., Zhang, Y. - J., Long, Y. - H., Wu, X. - M., Li, R. - Y., Wang, M., Tian, X. - L., and Jiao, X. - G., Analysis of persistent changes to γ-aminobutyric acid receptor gene expression in Plutella xylostella subjected to sublethal amounts of spinosad, vol. 15, p. -, 2016.
X. - H. Yin, Wu, Q. - J., Zhang, Y. - J., Long, Y. - H., Wu, X. - M., Li, R. - Y., Wang, M., Tian, X. - L., Jiao, X. - G., Yin, X. - H., Wu, Q. - J., Zhang, Y. - J., Long, Y. - H., Wu, X. - M., Li, R. - Y., Wang, M., Tian, X. - L., and Jiao, X. - G., Analysis of persistent changes to γ-aminobutyric acid receptor gene expression in Plutella xylostella subjected to sublethal amounts of spinosad, vol. 15, p. -, 2016.
M. L. Ou, Liu, G., Xiao, D., Zhang, B. H., Guo, C. C., Ye, X. G., Liu, Y., Zhang, N., Wang, M., Han, Y. J., Ye, X. H., Jing, C. X., Yang, G., Ou, M. L., Liu, G., Xiao, D., Zhang, B. H., Guo, C. C., Ye, X. G., Liu, Y., Zhang, N., Wang, M., Han, Y. J., Ye, X. H., Jing, C. X., and Yang, G., Association between miR-137 polymorphism and risk of schizophrenia: a meta-analysis, vol. 15, p. -, 2016.
M. L. Ou, Liu, G., Xiao, D., Zhang, B. H., Guo, C. C., Ye, X. G., Liu, Y., Zhang, N., Wang, M., Han, Y. J., Ye, X. H., Jing, C. X., Yang, G., Ou, M. L., Liu, G., Xiao, D., Zhang, B. H., Guo, C. C., Ye, X. G., Liu, Y., Zhang, N., Wang, M., Han, Y. J., Ye, X. H., Jing, C. X., and Yang, G., Association between miR-137 polymorphism and risk of schizophrenia: a meta-analysis, vol. 15, p. -, 2016.
Y. W. Pan, Zhou, Z. G., Wang, M., Dong, J. Q., Du, K. P., Li, S., Liu, Y. L., Lv, P. J., Gao, J. B., Pan, Y. W., Zhou, Z. G., Wang, M., Dong, J. Q., Du, K. P., Li, S., Liu, Y. L., Lv, P. J., and Gao, J. B., Combination of IL-6, IL-10, and MCP-1 with traditional serum tumor markers in lung cancer diagnosis and prognosis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Fund of China (Grant #81301220). REFERENCES Bhora FY, Chen DJ, Detterbeck FC, et al. (2014). The ITMIG/IASLC thymic epithelial tumors staging project: a proposed lymph node map for thymic epithelial tumors in the forthcoming 8th edition of the TNM classification of malignant tumors. J. Thorac. Oncol. 9: S88-96. Burns TF, Stabile LP, et al (2014). Targeting the estrogen pathway for the treatment and prevention of lung cancer. Lung Cancer Manag. 3: 43-52. http://dx.doi.org/10.2217/lmt.13.67 Chen F, Yan CE, Li J, Han XH, et al (2015a). Diagnostic value of CYFRA 21-1 and CEA for predicting lymph node metastasis in operable lung cancer. Int. J. Clin. Exp. Med. 8: 9820-9824. Chen Y, Zhang F, Tsai Y, Yang X, et al (2015b). IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation. Radiat. Oncol. 10: 227. http://dx.doi.org/10.1186/s13014-015-0534-1 Fiala O, Pesek M, Finek J, Svaton M, et al (2016). Prognostic significance of serum tumor markers in patients with advanced-stage NSCLC treated with pemetrexed-based chemotherapy. Anticancer Res. 36: 461-466. Genestreti G, Grossi F, Genova C, Burgio MA, et al (2014). Third- and further-line therapy in advanced non-small-cell lung cancer patients: an overview. Future Oncol. 10: 2081-2096. http://dx.doi.org/10.2217/fon.14.96 Hu L, Ibrahim S, Liu C, Skaar J, et al (2009). Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res. 69: 3374-3381. http://dx.doi.org/10.1158/0008-5472.CAN-08-4290 Huang Z, Yi X, Luo B, Zhu J, et al (2016). Induced sputum deposition improves diagnostic yields of pulmonary alveolar proteinosis: A clinicopathological and methodological study of 17 cases. Ultrastruct. Pathol. 40: 7-13. http://dx.doi.org/10.3109/01913123.2015.1104404 Lan X, Lan T, Faxiang Q, et al (2015). Interleukin-10 promoter polymorphism and susceptibility to lung cancer: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8: 15317-15328. Ma L, Xie XW, Wang HY, Ma LY, et al (2015). Clinical evaluation of tumor markers for diagnosis in patients with non-small cell lung cancer in China. Asian Pac. J. Cancer Prev. 16: 4891-4894. http://dx.doi.org/10.7314/APJCP.2015.16.12.4891 Northcott PA, Fernandez-L A, Hagan JP, Ellison DW, et al (2009). The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 69: 3249-3255. http://dx.doi.org/10.1158/0008-5472.CAN-08-4710 Ortakoylu MG, Iliaz S, Bahadir A, Aslan A, et al (2015). Diagnostic value of endobronchial ultrasound-guided transbronchial needle aspiration in various lung diseases. J. Bras. Pneumol. 41: 410-414. http://dx.doi.org/10.1590/S1806-37132015000004493 Pang JC, Kwok WK, Chen Z, Ng HK, et al (2009). Oncogenic role of microRNAs in brain tumors. Acta Neuropathol. 117: 599-611. http://dx.doi.org/10.1007/s00401-009-0525-0 Qader AA, Urraca J, Torsetnes SB, Tønnesen F, et al (2014). Peptide imprinted receptors for the determination of the small cell lung cancer associated biomarker progastrin releasing peptide. J. Chromatogr. A 1370: 56-62. http://dx.doi.org/10.1016/j.chroma.2014.10.023 Reddy SP, Natarajan V, Dudek AZ, et al (2014). MARCKS is marked in combating lung cancer growth and acquired resistance. Am. J. Respir. Crit. Care Med. 190: 1084-1086. http://dx.doi.org/10.1164/rccm.201410-1922ED Sasaki S, Yoshioka Y, Ko R, Katsura Y, et al (2016). Diagnostic significance of cerebrospinal fluid EGFR mutation analysis for leptomeningeal metastasis in non-small-cell lung cancer patients harboring an active EGFR mutation following gefitinib therapy failure. Respir. Investig. 54: 14-19. http://dx.doi.org/10.1016/j.resinv.2015.07.001 Shi P, Meng X, Ni M, Sun X, et al (2015). Association between serum tumor markers and metabolic tumor volume or total lesion glycolysis in patients with recurrent small cell lung cancer. Oncol. Lett. 10: 3123-3128. Shinke H, Masuda S, Togashi Y, Ikemi Y, et al (2015). Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients. Cancer Chemother. Pharmacol. 76: 989-996. http://dx.doi.org/10.1007/s00280-015-2880-y Xiao H, Liu Y, Tan H, Liang P, et al (2015). A pilot study using low-dose Spectral CT and ASIR (Adaptive Statistical Iterative Reconstruction) algorithm to diagnose solitary pulmonary nodules. BMC Med. Imaging 15: 54. http://dx.doi.org/10.1186/s12880-015-0096-6 Yang J, Wei F, Schafer C, Wong DT, et al (2014). Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One 9: e110641. http://dx.doi.org/10.1371/journal.pone.0110641 Yang L, Shi GL, Song CX, Xu SF, et al (2010). Relationship between genetic polymorphism of MCP-1 and non-small-cell lung cancer in the Han nationality of North China. Genet. Mol. Res. 9: 765-771. http://dx.doi.org/10.4238/vol9-2gmr740 Zaric B, Stojsic V, Carapic V, Kovacevic T, et al (2016). Radial endobronchial ultrasound (EBUS) guided suction catheter-biopsy in histological diagnosis of peripheral pulmonary lesions. J. Cancer 7: 7-13. http://dx.doi.org/10.7150/jca.13081 Zhao K, Xu J, Tian H, et al (2016). Correlation analysis between an IL-6 genetic polymorphism and non-small cell lung cancer prognosis. Genet. Mol. Res. 15: 15017021. http://dx.doi.org/10.4238/gmr.15017021
Y. W. Pan, Zhou, Z. G., Wang, M., Dong, J. Q., Du, K. P., Li, S., Liu, Y. L., Lv, P. J., Gao, J. B., Pan, Y. W., Zhou, Z. G., Wang, M., Dong, J. Q., Du, K. P., Li, S., Liu, Y. L., Lv, P. J., and Gao, J. B., Combination of IL-6, IL-10, and MCP-1 with traditional serum tumor markers in lung cancer diagnosis and prognosis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Fund of China (Grant #81301220). REFERENCES Bhora FY, Chen DJ, Detterbeck FC, et al. (2014). The ITMIG/IASLC thymic epithelial tumors staging project: a proposed lymph node map for thymic epithelial tumors in the forthcoming 8th edition of the TNM classification of malignant tumors. J. Thorac. Oncol. 9: S88-96. Burns TF, Stabile LP, et al (2014). Targeting the estrogen pathway for the treatment and prevention of lung cancer. Lung Cancer Manag. 3: 43-52. http://dx.doi.org/10.2217/lmt.13.67 Chen F, Yan CE, Li J, Han XH, et al (2015a). Diagnostic value of CYFRA 21-1 and CEA for predicting lymph node metastasis in operable lung cancer. Int. J. Clin. Exp. Med. 8: 9820-9824. Chen Y, Zhang F, Tsai Y, Yang X, et al (2015b). IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation. Radiat. Oncol. 10: 227. http://dx.doi.org/10.1186/s13014-015-0534-1 Fiala O, Pesek M, Finek J, Svaton M, et al (2016). Prognostic significance of serum tumor markers in patients with advanced-stage NSCLC treated with pemetrexed-based chemotherapy. Anticancer Res. 36: 461-466. Genestreti G, Grossi F, Genova C, Burgio MA, et al (2014). Third- and further-line therapy in advanced non-small-cell lung cancer patients: an overview. Future Oncol. 10: 2081-2096. http://dx.doi.org/10.2217/fon.14.96 Hu L, Ibrahim S, Liu C, Skaar J, et al (2009). Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res. 69: 3374-3381. http://dx.doi.org/10.1158/0008-5472.CAN-08-4290 Huang Z, Yi X, Luo B, Zhu J, et al (2016). Induced sputum deposition improves diagnostic yields of pulmonary alveolar proteinosis: A clinicopathological and methodological study of 17 cases. Ultrastruct. Pathol. 40: 7-13. http://dx.doi.org/10.3109/01913123.2015.1104404 Lan X, Lan T, Faxiang Q, et al (2015). Interleukin-10 promoter polymorphism and susceptibility to lung cancer: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8: 15317-15328. Ma L, Xie XW, Wang HY, Ma LY, et al (2015). Clinical evaluation of tumor markers for diagnosis in patients with non-small cell lung cancer in China. Asian Pac. J. Cancer Prev. 16: 4891-4894. http://dx.doi.org/10.7314/APJCP.2015.16.12.4891 Northcott PA, Fernandez-L A, Hagan JP, Ellison DW, et al (2009). The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 69: 3249-3255. http://dx.doi.org/10.1158/0008-5472.CAN-08-4710 Ortakoylu MG, Iliaz S, Bahadir A, Aslan A, et al (2015). Diagnostic value of endobronchial ultrasound-guided transbronchial needle aspiration in various lung diseases. J. Bras. Pneumol. 41: 410-414. http://dx.doi.org/10.1590/S1806-37132015000004493 Pang JC, Kwok WK, Chen Z, Ng HK, et al (2009). Oncogenic role of microRNAs in brain tumors. Acta Neuropathol. 117: 599-611. http://dx.doi.org/10.1007/s00401-009-0525-0 Qader AA, Urraca J, Torsetnes SB, Tønnesen F, et al (2014). Peptide imprinted receptors for the determination of the small cell lung cancer associated biomarker progastrin releasing peptide. J. Chromatogr. A 1370: 56-62. http://dx.doi.org/10.1016/j.chroma.2014.10.023 Reddy SP, Natarajan V, Dudek AZ, et al (2014). MARCKS is marked in combating lung cancer growth and acquired resistance. Am. J. Respir. Crit. Care Med. 190: 1084-1086. http://dx.doi.org/10.1164/rccm.201410-1922ED Sasaki S, Yoshioka Y, Ko R, Katsura Y, et al (2016). Diagnostic significance of cerebrospinal fluid EGFR mutation analysis for leptomeningeal metastasis in non-small-cell lung cancer patients harboring an active EGFR mutation following gefitinib therapy failure. Respir. Investig. 54: 14-19. http://dx.doi.org/10.1016/j.resinv.2015.07.001 Shi P, Meng X, Ni M, Sun X, et al (2015). Association between serum tumor markers and metabolic tumor volume or total lesion glycolysis in patients with recurrent small cell lung cancer. Oncol. Lett. 10: 3123-3128. Shinke H, Masuda S, Togashi Y, Ikemi Y, et al (2015). Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients. Cancer Chemother. Pharmacol. 76: 989-996. http://dx.doi.org/10.1007/s00280-015-2880-y Xiao H, Liu Y, Tan H, Liang P, et al (2015). A pilot study using low-dose Spectral CT and ASIR (Adaptive Statistical Iterative Reconstruction) algorithm to diagnose solitary pulmonary nodules. BMC Med. Imaging 15: 54. http://dx.doi.org/10.1186/s12880-015-0096-6 Yang J, Wei F, Schafer C, Wong DT, et al (2014). Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One 9: e110641. http://dx.doi.org/10.1371/journal.pone.0110641 Yang L, Shi GL, Song CX, Xu SF, et al (2010). Relationship between genetic polymorphism of MCP-1 and non-small-cell lung cancer in the Han nationality of North China. Genet. Mol. Res. 9: 765-771. http://dx.doi.org/10.4238/vol9-2gmr740 Zaric B, Stojsic V, Carapic V, Kovacevic T, et al (2016). Radial endobronchial ultrasound (EBUS) guided suction catheter-biopsy in histological diagnosis of peripheral pulmonary lesions. J. Cancer 7: 7-13. http://dx.doi.org/10.7150/jca.13081 Zhao K, Xu J, Tian H, et al (2016). Correlation analysis between an IL-6 genetic polymorphism and non-small cell lung cancer prognosis. Genet. Mol. Res. 15: 15017021. http://dx.doi.org/10.4238/gmr.15017021
L. An, Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., Du, P., An, L., Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., and Du, P., Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice, vol. 15, p. -, 2016.
L. An, Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., Du, P., An, L., Han, X., Li, H., Ma, Y., Shi, L., Xu, G., Yuan, G., Sun, J., Zhao, N., Sheng, Y., Wang, M., and Du, P., Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice, vol. 15, p. -, 2016.
Y. W. Nie, Zhang, P., Zhang, J., Liang, H. Y., Wang, M., Dai, B., Liang, H., Liu, D. J., Nie, Y. W., Zhang, P., Zhang, J., Liang, H. Y., Wang, M., Dai, B., Liang, H., and Liu, D. J., Isolation and characterization of white and brown adipocytes in Kunming mice, vol. 15, p. -, 2016.
Y. W. Nie, Zhang, P., Zhang, J., Liang, H. Y., Wang, M., Dai, B., Liang, H., Liu, D. J., Nie, Y. W., Zhang, P., Zhang, J., Liang, H. Y., Wang, M., Dai, B., Liang, H., and Liu, D. J., Isolation and characterization of white and brown adipocytes in Kunming mice, vol. 15, p. -, 2016.
2015
Y. Zhang, Wang, M., Yu, X. Q., Ye, C. R., and Zhu, J. G., Analysis of polymorphisms in the FUT1 and TAP1 genes and their influence on immune performance in Pudong White pigs, vol. 14, pp. 17193-17203, 2015.
C. C. Guo, Huang, W. H., Zhang, N., Dong, F., Jing, L. P., Liu, Y., Ye, X. G., Xiao, D., Ou, M. L., Zhang, B. H., Wang, M., Liang, W. K., Yang, G., and Jing, C. X., Association between IL2/IL21 and SH2B3 polymorphisms and risk of celiac disease: a meta-analysis, vol. 14, pp. 13221-13235, 2015.
W. H. Huang, Nie, L. H., Zhang, L. J., Jing, L. P., Dong, F., Wang, M., Zhang, N., Liu, Y., Zhang, B. H., Chen, C., Lin, H. S., Wei, X. C., Yang, G., and Jing, C. X., Association of TLR2 and TLR4 non-missense single nucleotide polymorphisms with type 2 diabetes risk in a southern Chinese population: a case-control study, vol. 14, pp. 8694-8705, 2015.
S. Wang, Wang, M., and Zhang, C. Y., Characteristics of mature wheat embryos with different resistance to scab cultured in vitro with Fusarium graminearum crude toxin, vol. 14, pp. 17348-17357, 2015.
J. Sun, Li, J., Liu, M., Zhang, B. B., Li, D. M., Wang, M., Zhang, C., Li, W. B., Su, A. Y., and Wu, X. X., Construction and analysis of a suppression subtractive hybridization library of regeneration-related genes in soybean, vol. 14, pp. 763-773, 2015.
X. L. Zhou and Wang, M., Expression levels of survivin, Bcl-2, and KAI1 proteins in cervical cancer and their correlation with metastasis, vol. 14, pp. 17059-17067, 2015.
Y. N. Zhu, Lu, S. M., Wang, M., Shen, F. X., Chen, Y., and Hu, J. J., Genetic analysis of STR markers on chromosome 21 in a Han population from southeast China, vol. 14, pp. 1718-1725, 2015.
Y. Abula, Yi, C., Wang, X. - Y., Wang, M., Qin, R. - Y., Guo, Y. - Q., Lin, H., and Li, H. - J., Gli1 expression in pancreatic ductal adenocarcinoma and its clinical significance, vol. 14, pp. 12323-12329, 2015.
W. Ji, Li, G. R., Luo, Y. X., Ma, X. H., Wang, M., and Ren, R., In vitro embryo rescue culture of F1 progenies from crosses between different ploidy grapes, vol. 14, pp. 18616-18622, 2015.
P. F. Sang, Wang, H., Wang, M., Hu, C., Zhang, J. S., Li, X. J., and Zhu, F., NEDD4-1 and PTEN expression in keloid scarring, vol. 14, pp. 13467-13475, 2015.
2013
W. Yan, Wang, Y. W., Yang, F. F., Wang, M., Zhang, X. Q., Dong, J., Chen, E., and Yang, J., Differences in frequencies of UGT1A9, 1A7, and 1A1 genetic polymorphisms in Chinese Tibetan versus Han Chinese populations, vol. 12, pp. 6454-6461, 2013.
M. Wang, Liu, C., Zhang, Y., Hao, Y., Zhang, X., and Zhang, Y. M., Protein interaction and microRNA network analysis in osteoarthritis meniscal cells, vol. 12, pp. 738-746, 2013.
Abramson SB and Attur M (2009). Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11: 227. http://dx.doi.org/10.1186/ar2655 PMid:19519925 PMCid:2714096   Barre PE, Redini F, Boumediene K, Vielpeau C, et al. (2000). Semiquantitative reverse transcription-polymerase chain reaction analysis of syndecan-1 and -4 messages in cartilage and cultured chondrocytes from osteoarthritic joints. Osteoarthritis Cartilage 8: 34-43. http://dx.doi.org/10.1053/joca.1999.0286 PMid:10607497   Gobezie R, Kho A, Krastins B, Sarracino DA, et al. (2007). High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res. Ther. 9: R36. http://dx.doi.org/10.1186/ar2172 PMid:17407561 PMCid:1906814   Hardingham T (2008). Extracellular matrix and pathogenic mechanisms in osteoarthritis. Curr. Rheumatol. Rep. 10: 30-36. http://dx.doi.org/10.1007/s11926-008-0006-9 PMid:18457609   Hopwood B, Tsykin A, Findlay DM and Fazzalari NL (2007). Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res. Ther. 9: R100. http://dx.doi.org/10.1186/ar2301 PMid:17900349 PMCid:2212557   Huang dW, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.   Ikeda S, He A, Kong SW, Lu J, et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell Biol. 29: 2193-2204. http://dx.doi.org/10.1128/MCB.01222-08 PMid:19188439 PMCid:2663304   Ivanov AI and Romanovsky AA (2006). Putative dual role of ephrin-Eph receptor interactions in inflammation. IUBMB Life 58: 389-394. http://dx.doi.org/10.1080/15216540600756004 PMid:16801213   Jiang Q, Wang Y, Hao Y, Juan L, et al. (2009). miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37: D98-104. http://dx.doi.org/10.1093/nar/gkn714 PMid:18927107 PMCid:2686559   Joos H, Albrecht W, Laufer S, Reichel H, et al. (2008). IL-1beta regulates FHL2 and other cytoskeleton-related genes in human chondrocytes. Mol. Med. 14: 150-159. http://dx.doi.org/10.2119/2007-00138.Joos PMid:18224250 PMCid:2213891   Kawahara C, Forster T, Chapman K, Carr A, et al. (2005). Genetic association analysis of the IGFBP7, ADAMTS3, and IL8 genes as the potential osteoarthritis susceptibility that maps to chromosome 4q. Ann. Rheum. Dis. 64: 474-476. http://dx.doi.org/10.1136/ard.2004.027342 PMid:15708897 PMCid:1755421   Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, et al. (2009). Human Protein Reference Database - 2009 update. Nucleic Acids Res. 37: D767-D772. http://dx.doi.org/10.1093/nar/gkn892 PMid:18988627 PMCid:2686490   Liu Y, Patel S, Nibbe R, Maxwell S, et al. (2011). Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea. Pac. Symp. Biocomput. 14-25. PMid:21121029   Lu M, Zhang Q, Deng M, Miao J, et al. (2008). An analysis of human microRNA and disease associations. PLoS One 3: e3420. http://dx.doi.org/10.1371/journal.pone.0003420 PMid:18923704 PMCid:2559869   Luyten FP, Tylzanowski P and Lories RJ (2009). Wnt signaling and osteoarthritis. Bone 44: 522-527. http://dx.doi.org/10.1016/j.bone.2008.12.006 PMid:19136083   Martel-Pelletier J (2004). Pathophysiology of osteoarthritis. Osteoarthritis. Cartilage. 12 (Suppl A): S31-S33. http://dx.doi.org/10.1016/j.joca.2003.10.002 PMid:14698638   Martel-Pelletier J, Di Battista JA, Lajeunesse D and Pelletier JP (1998). IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm. Res. 47: 90-100. http://dx.doi.org/10.1007/s000110050288 PMid:9562333   Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, et al. (2009). The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37: D155-D158. http://dx.doi.org/10.1093/nar/gkn809 PMid:18957447 PMCid:2686456   Poulou M, Kaliakatsos M, Tsezou A, Kanavakis E, et al. (2008). Association of the CALM1 core promoter polymorphism with knee osteoarthritis in patients of Greek origin. Genet. Test. 12: 263-265. http://dx.doi.org/10.1089/gte.2007.0114 PMid:18452398   Rousseau JC and Delmas PD (2007). Biological markers in osteoarthritis. Nat. Clin. Pract. Rheumatol. 3: 346-356. http://dx.doi.org/10.1038/ncprheum0508 PMid:17538566   Salminen-Mankonen H, Saamanen AM, Jalkanen M, Vuorio E, et al. (2005). Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis. Scand. J. Rheumatol. 34: 469-474. http://dx.doi.org/10.1080/03009740500304338 PMid:16393771   Sarzi-Puttini P, Cimmino MA, Scarpa R, Caporali R, et al. (2005). Osteoarthritis: an overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 35: 1-10. http://dx.doi.org/10.1016/j.semarthrit.2005.01.013 PMid:16084227   Shahrara S, Volin MV, Connors MA, Haines GK, et al. (2002). Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res. 4: 201-208. http://dx.doi.org/10.1186/ar407 PMid:12010571 PMCid:111023   Smyth GK (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet Mol. Biol. 3: Article3.   Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, et al. (2011). The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39: D698-D704. http://dx.doi.org/10.1093/nar/gkq1116 PMid:21071413 PMCid:3013707   Subramanian A, Sharma AK, Banerjee D, Jiang WG, et al. (2007). Evidence for a tumour suppressive function of IGF1- binding proteins in human breast cancer. Anticancer Res. 27: 3513-3518. PMid:17972510   Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, et al. (2010). Analysis of meniscal degeneration and meniscal gene expression. BMC Musculoskelet. Disord. 11: 19. http://dx.doi.org/10.1186/1471-2474-11-19 PMid:20109188 PMCid:2828422   Todoerti K, Barbui V, Pedrini O, Lionetti M, et al. (2010). Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 95: 260-269. http://dx.doi.org/10.3324/haematol.2009.012088 PMid:19713220 PMCid:2817029   Valdes AM, Loughlin J, Oene MV, Chapman K, et al. (2007). Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 56: 137-146. http://dx.doi.org/10.1002/art.22301 PMid:17195216   Wu X and Song Y (2011). Preferential regulation of miRNA targets by environmental chemicals in the human genome. BMC Genomics 12: 244. http://dx.doi.org/10.1186/1471-2164-12-244 PMid:21592377 PMCid:3118786   Xiao F, Zuo Z, Cai G, Kang S, et al. (2009). miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37: D105-D110. http://dx.doi.org/10.1093/nar/gkn851 PMid:18996891 PMCid:2686554   Yang JH, Li JH, Shao P, Zhou H, et al. (2011). starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39: D202-D209. http://dx.doi.org/10.1093/nar/gkq1056 PMid:21037263 PMCid:3013664
2012
Y. Liu, Hui, R. - K., Deng, R. - N., Wang, J. - J., Wang, M., and Li, Z. - Y., Abnormal male meiosis explains pollen sterility in the polyploid medicinal plant Pinellia ternata (Araceae), vol. 11, pp. 112-120, 2012.
Bellucci M, Roscini C and Mariani A (2003). Cytomixis in pollen mother cells of Medicago sativa L. J. Hered. 94: 512- 516. http://dx.doi.org/10.1093/jhered/esg096 PMid:14691318 Boldrini KR, Pagliarini MS and Do Valle CB (2006). Cell fusion and cytomixis during microsporogenesis in Brachiaria humidicola (Poaceae). South Afr. J. Bot. 72: 478-481. http://dx.doi.org/10.1016/j.sajb.2005.11.004 Chen CB, Ma XJ, Chen L, Xue M, et al. (2006). Studies on cytogeography of Pinellia ternata poliploid complex. Zhongguo Zhong. Yao Za Zhi. 31: 1405-1408. Datta AK, Mukherjee M and Iqbal M (2005). Persistent cytomixis in Occimum basilicum L. (Lamiaceae) and Withania somnifera (L.) Dun (Solanaceae). Cytologia 70: 309-313. http://dx.doi.org/10.1508/cytologia.70.309 de Souza A and Pagliarini M (1997). Cytomixis in Brassica napus var. oleifera and Brassica campestris var. oleifera (Brassicaceae). Cytologia 62: 25-29. http://dx.doi.org/10.1508/cytologia.62.25 Falistocco E, Tosti N and Falcinelli M (1995). Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J. Hered. 86: 448-453. Ghaffari SM (2006). Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr. J. Biotechnol. 5: 1450-1453. Ghanima AM and Talaat AA (2003). Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae). Bot. J. Linn. Soc. 143: 169-175. http://dx.doi.org/10.1046/j.1095-8339.2003.00218.x Gu DX and Xu PS (1991). A comparison of the variation patterns of populations between two species of Pinellia from Nanjing. Acta Phytotaxon. Sin. 29: 423-430. Haroun SA (1995). Cytomixis in pollen mother cells of Polygonum tomentosum Schrank. Cytologia 60: 257-260. http://dx.doi.org/10.1508/cytologia.60.257 Heslop-Harrison J (1966). Cytoplasmic connexions between angiosperm meiocytes. Ann. Bot. 30: 221-222. Huttoleston DG (1942). Lysichiton version versus Lyschichitum. Bull. Torrey Bot. Club 108: 479-481. Ito T (1942). Chromosome und Sexualität der Araceae. I. Somatische hromosomenzahlen einiger Arten. Cytologia 12: 313-325. Lattoo SK, Khan S, Bamotra S and Dhar AK (2006). Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq. - an additional strategy and possible implications. J. Biosci. 31: 629-637. http://dx.doi.org/10.1007/BF02708415 PMid:17301501 Li H (1979). The ‘tian-nan-xing’, ‘hu-zhang’ and ‘ban-xia’ in Chinese herbalogies. Acta Bot. Yunnanica 2: 13-26. Li L (1995). A Systematic Study of the Genus Pinellia tenore (Araceae) in China. Proc. VI International, Aroid Conference, Editorial Department Acta Botanic Yunnanica, Kunming, 44. Li MW, Gu DX and Liu YL (1997). Several variation patterns and their evolution of Pinellia (Araceae). J. Wuhan Bot. Res. 15: 317-322. Li XF, Song ZQ, Feng DS and Wang HG (2009). Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat. Cereal Res. Commun. 37: 353-361. http://dx.doi.org/10.1556/CRC.37.2009.3.4 Li Z, Liu HL and Luo P (1995). Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor. Appl. Genet. 91: 131-136. http://dx.doi.org/10.1007/BF00220869 Luo HS and Zhou DH (1979). Brief introduction of Chinese medicine commonly used as anti-tumor. J. New. Chin. Medicine 4: 53-54. Maity S and Datta AK (2009). Meiosis in nine species of Jute (Corchorus). Indian J. Sci. Tech. 2: 27-29. Malallah GA and Attia TA (2003). Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae). Bot. J. Linn. Soc. 143: 169-175. http://dx.doi.org/10.1046/j.1095-8339.2003.00218.x Malvesin-Fabre G (1972). Contribution à la Caryologie des Aracées. E. Drouillard, Bordeaux. Marchant CJ (1972). Chromosome variation in Araceae: IV* Areae. Kew Bull. 26: 395-404. http://dx.doi.org/10.2307/4120302 Mayo SJ, Bogner J and Boyce PC (1997). The genera of Araceae. Kew: Royal Botanic Gardens 280-283. Nirmala A and Rao PN (1996). Genesis of chromosome numerical mosaicism in higher plants. Nucleus 39: 151-175. Pierozzi NI and Benatti R (1998). Cytological analysis in the microsporogenesis of ramie, Boehmeria nivea Gaud. (Urticaceae) and the effect of colchicine on the chiasma frequency. Cytologia 63: 213-221. http://dx.doi.org/10.1508/cytologia.63.213 Sarvella P (1958). Cytomixis and loss of chromosomes in meiotic and somatic cells of Gossypium. Cytologia 33: 14-24. http://dx.doi.org/10.1508/cytologia.23.14 Semyarkhina SY and Kuptsou MS (1974). Cytomixis in various forms of sugarbeet. Vests. I. AN BSSE. Ser. Biyal. 4: 43-47. Sheidai M and Fadaei F (2005). Cytogenetic studies in some species of Bromus L., section Genea Dum. J. Genet 84: 189-194. http://dx.doi.org/10.1007/BF02715845 PMid:16131719 Singhal VK and Kumar P (2008a). Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J. Biosci. 33: 371-380. http://dx.doi.org/10.1007/s12038-008-0057-0 PMid:19005237 Singhal VK and Kumar P (2008b). Cytomixis during microsporogenesis in the diploid and tetraploid cytotypes of Withania somnifera (L.) Dunal, 1852 (Solanaceae). Comp. Cytogenet. 2: 85-92. Singhal VK, Gill BS and Dhaliwal RS (2007). Status of chromosomal diversity in the hardwood tree species of Punjab State. J. Cytol. Genet. 8: 67-83. Veilleux R (1985). Diploid and polyploid gametes in crop plants: mechanism of formation and utilization in plant breeding. Plant Breed. Rev. 3: 253-288. Wang ZX, Peng ZS and He YK (2000). Genetic analysis of male gamete abortion in Pinellia ternata. Acta Agron. Sin. 26: 83-86. Wu W, Zheng YL, Yang RW and Chen L (2003). Variation of the chromosome number and cytomixis of Houttuynia cordata from China. J. Syst. Evol. 41: 245-257. Yi TS, Li H and Li DZ (2005). Chromosome variation in the genus Pinellia (Araceae) in China and Japan. Bot. J. Linn. Soc. 147: 449-455. http://dx.doi.org/10.1111/j.1095-8339.2005.00381.x Zhu GH, Li H and Li R (2007). A synopsis and a new species of the E Asian genus Pinellia (Araceae). Willdenowia 37: 503-522. http://dx.doi.org/10.3372/wi.37.37209
2010
M. A. S. Dehwah, Wang, M., and Huang, Q. - Y., CDKAL1 and type 2 diabetes: a global meta-analysis, vol. 9, pp. 1109-1120, 2010.
Anonymous (2008). Diagnosis and classification of diabetes mellitus. Diabetes Care 31: (S55-S60). http://dx.doi.org/10.2337/dc08-S055 PMid:18165338   Boutayeb A and Boutayeb S (2005). The burden of non communicable diseases in developing countries. Int. J. Equity. Health 4: 2. http://dx.doi.org/10.1186/1475-9276-4-2 PMid:15651987 PMCid:546417   Cauchi S, Meyre D, Durand E, Proenca C, et al. (2008a). Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS. One 3: e2031. http://dx.doi.org/10.1371/journal.pone.0002031 PMid:18461161 PMCid:2346547   Cauchi S, Proenca C, Choquet H, Gaget S, et al. (2008b). Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86: 341-348. http://dx.doi.org/10.1007/s00109-007-0295-x PMid:18210030   Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2006). Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38: 320-323. http://dx.doi.org/10.1038/ng1732 PMid:16415884   Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, et al. (2008). Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51: 1659-1663. http://dx.doi.org/10.1007/s00125-008-1083-z PMid:18618095   Hertel JK, Johansson S, Raeder H, Midthjell K, et al. (2008). Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study). Diabetologia 51: 971-977. http://dx.doi.org/10.1007/s00125-008-0982-3 PMid:18437351   Horikawa Y, Miyake K, Yasuda K, Enya M, et al. (2008). Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J. Clin. Endocrinol. Metab. 93: 3136-3141. http://dx.doi.org/10.1210/jc.2008-0452 PMid:18477659   Horikoshi M, Hara K, Ito C, Shojima N, et al. (2007). Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50: 2461-2466. http://dx.doi.org/10.1007/s00125-007-0827-5 PMid:17928989   Kirchhoff K, Machicao F, Haupt A, Schafer SA, et al. (2008). Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601. http://dx.doi.org/10.1007/s00125-008-0926-y PMid:18264689   Lee YH, Kang ES, Kim SH, Han SJ, et al. (2008). Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J. Hum. Genet. 53: 991-998. http://dx.doi.org/10.1007/s10038-008-0341-8 PMid:18991055   Lew J, Huang QQ, Qi Z, Winkfein RJ, et al. (1994). A brain-specific activator of cyclin-dependent kinase 5. Nature 371: 423-426. http://dx.doi.org/10.1038/371423a0 PMid:8090222   Lewis JP, Palmer ND, Hicks PJ, Sale MM, et al. (2008). Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57: 2220-2225. http://dx.doi.org/10.2337/db07-1319 PMid:18443202 PMCid:2494685   Liu Y, Yu L, Zhang D, Chen Z, et al. (2008). Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia 51: 2134-2137. http://dx.doi.org/10.1007/s00125-008-1141-6 PMid:18766326   Ng MC, Park KS, Oh B, Tam CH, et al. (2008). Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57: 2226-2233. http://dx.doi.org/10.2337/db07-1583 PMid:18469204 PMCid:2494677   Omori S, Tanaka Y, Takahashi A, Hirose H, et al. (2008). Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57: 791-795. http://dx.doi.org/10.2337/db07-0979 PMid:18162508   Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, et al. (2008). Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the Insulin Resistance Atherosclerosis Family Study. Diabetes 57: 1093-1100. http://dx.doi.org/10.2337/db07-1169 PMid:18252897   Pascoe L, Tura A, Patel SK, Ibrahim IM, et al. (2007). Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes 56: 3101-3104. http://dx.doi.org/10.2337/db07-0634 PMid:17804762   Ramachandran A, Snehalatha C, Latha E, Vijay V, et al. (1997). Rising prevalence of NIDDM in an urban population in India. Diabetologia 40: 232-237. http://dx.doi.org/10.1007/s001250050668 PMid:9049486   Ramachandran A, Snehalatha C, Kapur A, Vijay V, et al. (2001). High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia 44: 1094-1101. http://dx.doi.org/10.1007/s001250100627 PMid:11596662   Rong R, Hanson RL, Ortiz D, Wiedrich C, et al. (2009). Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 58: 478-488. http://dx.doi.org/10.2337/db08-0877 PMid:19008344 PMCid:2628623   Rosales JL and Lee KY (2006). Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28: 1023-1034. http://dx.doi.org/10.1002/bies.20473 PMid:16998837   Sanghera DK, Ortega L, Han S, Singh J, et al. (2008). Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med. Genet. 9: 59. http://dx.doi.org/10.1186/1471-2350-9-59 PMid:18598350 PMCid:2481250   Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336. http://dx.doi.org/10.1126/science.1142358 PMid:17463246   Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345. http://dx.doi.org/10.1126/science.1142382 PMid:17463248 PMCid:3214617   Stancáková A, Pihlajamaki J, Kuusisto J, Stefan N, et al. (2008). Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J. Clin. Endocrinol. Metab. 93: 1924-1930. http://dx.doi.org/10.1210/jc.2007-2218 PMid:18285412   Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39: 770-775. http://dx.doi.org/10.1038/ng2043 PMid:17460697   Tabara Y, Osawa H, Kawamoto R, Onuma H, et al. (2009). Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58: 493-498. http://dx.doi.org/10.2337/db07-1785 PMid:19033397 PMCid:2628625   Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, et al. (2009). Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58: 1690-1699. http://dx.doi.org/10.2337/db08-1494 PMid:19401414 PMCid:2699880   Teo YY, Sim X, Ong RT, Tan AK, et al. (2009). Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations. Genome Res. 19: 2154-2162. http://dx.doi.org/10.1101/gr.095000.109 PMid:19700652 PMCid:2775604   Tong Y, Lin Y, Zhang Y, Yang J, et al. (2009). Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med. Genet. 10: 15. http://dx.doi.org/10.1186/1471-2350-10-15 PMid:19228405 PMCid:2653476   Ubeda M, Rukstalis JM and Habener JF (2006). Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J. Biol. Chem. 281: 28858-28864. http://dx.doi.org/10.1074/jbc.M604690200 PMid:16887799   Wang K, Li T and Xiang H (1998). Study on the epidemiological characteristics of diabetes mellitus and IGT in China. Zhonghua Liu Xing. Bing. Xue. Za Zhi. 19: 282-285. PMid:10322687   Wu Y, Li H, Loos RJ, Yu Z, et al. (2008). Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/ IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes 57: 2834-2842. http://dx.doi.org/10.2337/db08-0047 PMid:18633108 PMCid:2551696   Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341. http://dx.doi.org/10.1126/science.1142364 PMid:17463249
X. Z. Kan, Li, X. F., Lei, Z. P., Wang, M., Chen, L., Gao, H., and Yang, Z. Y., Complete mitochondrial genome of Cabot’s tragopan, Tragopan caboti (Galliformes: Phasianidae), vol. 9, pp. 1204-1216, 2010.
Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780. http://dx.doi.org/10.1093/nar/27.8.1767 PMid:10101183 PMCid:148383   Brown GG, Gadaleta G, Pepe G, Saccone C, et al. (1986). Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J. Mol. Biol. 192: 503-511. http://dx.doi.org/10.1016/0022-2836(86)90272-X   Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, et al. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22: 495-532. http://dx.doi.org/10.1111/j.1096-0031.2006.00120.x   del Hoyo J, Elliot A and Sargatal J (1994). Handbook of the Birds of the World. Vol. 2. Lynx Editions, Barcelona, 434-557.   Deng WH and Zheng GM (2004). Landscape and habitat factors affecting Cabot's tragopan Tragopan caboti occurrence in habitat fragments. Biol. Conserv. 117: 25-32. http://dx.doi.org/10.1016/S0006-3207(03)00259-3   Dyke GJ, Gulas BE and Crowe TM (2003). Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters. Zoolog. J. Linnean Soc. 137: 227-244. http://dx.doi.org/10.1046/j.1096-3642.2003.00048.x   Guan X, Silva P, Gyenai KB, Xu J, et al. (2009). The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo. Anim. Genet. 40: 134-141. http://dx.doi.org/10.1111/j.1365-2052.2008.01810.x PMid:19067672 PMCid:2664387   He L, Dai B, Zeng B, Zhang X, et al. (2009). The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila rufipectus) and a phylogenetic analysis with related species. Gene 435: 23-28. http://dx.doi.org/10.1016/j.gene.2009.01.001 PMid:19393190   IUCN (2009). IUCN Red List of Threatened Species. Gland, Switzerland. Available at [http://www.iucnredlist.org]. Accessed November 9, 2009.   Kumazawa Y and Nishida M (1993). Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J. Mol. Evol. 37: 380-398. http://dx.doi.org/10.1007/BF00178868 PMid:7508516   L'Abbe D, Duhaime JF, Lang BF and Morais R (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J. Biol. Chem. 266: 10844-10850. PMid:1710214   Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036   Lohse M, Drechsel O and Bock R (2007). Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. http://dx.doi.org/10.1007/s00294-007-0161-y PMid:17957369   Lowe TM and Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964. PMid:9023104 PMCid:146525   Mindell DP, Sorenson MD and Dimcheff DE (1998). An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol. Biol. Evol. 15: 1568-1571. http://dx.doi.org/10.1093/oxfordjournals.molbev.a025884 PMid:12572620   Monroe BL and Sibley CG (1990). A World Checklist of Birds. Yale University Press, New Haven.   Moore WS (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718-726. http://dx.doi.org/10.2307/2410325   Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385. http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x PMid:11736810   Nishibori M, Tsudzuki M, Hayashi T, Yamamoto Y, et al. (2002). Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species. J. Hered. 93: 439-444. http://dx.doi.org/10.1093/jhered/93.6.439 PMid:12642645   Nishibori M, Hayashi T and Yasue H (2004). Complete nucleotide sequence of Numida meleagris (Helmeted guineafowl) mitochondrial genome. J. Poult. Sci. 41: 259-268. http://dx.doi.org/10.2141/jpsa.41.259   Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet. 36: 367-375. http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x PMid:16167978   Perna NT and Kocher TD (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358. http://dx.doi.org/10.1007/BF01215182 PMid:7563121   Quinn TW (1992). The genetic legacy of Mother Goose - phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol. Ecol. 1: 105-117. http://dx.doi.org/10.1111/j.1365-294X.1992.tb00162.x PMid:1344986   Randi E and Lucchini V (1998). Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J. Mol. Evol. 47: 449-462. http://dx.doi.org/10.1007/PL00006402 PMid:9767690   Ruokonen M and Kvist L (2002). Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol. 23: 422-432. http://dx.doi.org/10.1016/S1055-7903(02)00021-0   Russell RD and Beckenbach AT (2008). Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J. Mol. Evol. 67: 682-695. http://dx.doi.org/10.1007/s00239-008-9179-0 PMid:19030769 PMCid:2706983   Saccone C, Pesole G and Sbisa E (1991). The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J. Mol. Evol. 33: 83-91. http://dx.doi.org/10.1007/BF02100199 PMid:1909377   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   San Mauro D, Garcia-Paris M and Zardoya R (2004). Phylogenetic relationships of discoglossid frogs (Amphibia:Anura:Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene 343: 357- 366. http://dx.doi.org/10.1016/j.gene.2004.10.001 PMid:15588590   Sbisa E, Tanzariello F, Reyes A, Pesole G, et al. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140. http://dx.doi.org/10.1016/S0378-1119(97)00404-6   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Shen X, Tian M, Liu Z, Cheng H, et al. (2009a). Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern. Gene 439: 79-86. http://dx.doi.org/10.1016/j.gene.2009.03.008 PMid:19306915   Shen YY, Shi P, Sun YB and Zhang YP (2009b). Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 19: 1760-1765. http://dx.doi.org/10.1101/gr.093138.109 PMid:19617397 PMCid:2765268   Slack KE, Janke A, Penny D and Arnason U (2003). Two new avian mitochondrial genomes (penguin and goose) and a summary of bird and reptile mitogenomic features. Gene 302: 43-52. http://dx.doi.org/10.1016/S0378111902010533 PMid:12527195   Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13. http://dx.doi.org/10.1016/j.ympev.2006.06.002 PMid:16854605   Walberg MW and Clayton DA (1981). Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 9: 5411-5421. http://dx.doi.org/10.1093/nar/9.20.5411 PMid:7301592 PMCid:327529   Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216. http://dx.doi.org/10.1016/S0074-7696(08)62066-5   Wyman SK, Jansen RK and Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. http://dx.doi.org/10.1093/bioinformatics/bth352 PMid:15180927   Zhang JF, Nie LW, Wang Y and Hu LL (2009). The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA. Gene 442: 119-127. http://dx.doi.org/10.1016/j.gene.2009.04.018 PMid:19397958   Zhang Y and Zheng G (2007). A population viability analysis (PVA) for Cabot's tragopan (Tragopan caboti) in Wuyanling, south-east China. Bird Conserv. Int. 17: 151-161. http://dx.doi.org/10.1017/S0959270907000652
X. - Z. Kan, Yang, J. - K., Li, X. - F., Chen, L., Lei, Z. - P., Wang, M., Qian, C. - J., Gao, H., and Yang, Z. - Y., Phylogeny of major lineages of galliform birds (Aves: Galliformes) based on complete mitochondrial genomes, vol. 9, pp. 1625-1633, 2010.
Abascal F, Zardoya R and Posada D (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104-2105. http://dx.doi.org/10.1093/bioinformatics/bti263 PMid:15647292   Birks SM and Edwards SV (2002). A phylogeny of the megapodes (Aves: Megapodiidae) based on nuclear and mitochondrial DNA sequences. Mol. Phylogenet. Evol. 23: 408-421. http://dx.doi.org/10.1016/S1055-7903(02)00002-7   Brom TG and Dekker RWRJ (1992). Current studies on megapode phylogeny. Zool. Verhandelingen 278: 7-17.   Cracraft J (1981). Toward a phylogenetic classification of the recent birds of the world (class Aves). Auk 98: 681-714.   Crowe TM (1988). Molecules vs. morphology in systematics: a non-controversy. Trans. R. Soc. S. Afr. 46: 317-334. http://dx.doi.org/10.1080/00359198809520135   Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, et al. (2006). Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics 22: 495-532. http://dx.doi.org/10.1111/j.1096-0031.2006.00120.x   Cummings MP, Otto SP and Wakeley J (1995). Sampling properties of DNA sequence data in phylogenetic analysis. Mol. Biol. Evol. 12: 814-822. PMid:7476127   del Hoyo J, Elliot A and Sargatal J (1994). Handbook of the Birds of the World. Vol. 2. Lynx Editions, Barcelona, 434-557.   Dimcheff DE, Drovetski SV and Mindell DP (2002). Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. Mol. Phylogenet. Evol. 24: 203-215. http://dx.doi.org/10.1016/S1055-7903(02)00230-0   Dyke GJ, Gulas BE and Crowe TM (2003). Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters. Zool. J. Linn. Soc. 137: 227-244. http://dx.doi.org/10.1046/j.1096-3642.2003.00048.x   Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. http://dx.doi.org/10.2307/2408678   Guan X, Silva P, Gyenai KB, Xu J, et al. (2009). The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo. Anim. Genet. 40: 134-141. http://dx.doi.org/10.1111/j.1365-2052.2008.01810.x PMid:19067672 PMCid:2664387   Guindon S and Gascuel O (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. http://dx.doi.org/10.1080/10635150390235520 PMid:14530136   He L, Dai B, Zeng B, Zhang X, et al. (2009). The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila rufipectus) and a phylogenetic analysis with related species. Gene 435: 23-28. http://dx.doi.org/10.1016/j.gene.2009.01.001 PMid:19393190   Hockey PAR, Dean WRJ and Ryan PG (2005). Roberts-Birds of Southern Africa. 5th edn. The Trustees of the John Voclcker Bird Book Fund, Cape Town.   Huelsenbeck JP and Ronquist F (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. http://dx.doi.org/10.1093/bioinformatics/17.8.754 PMid:11524383   Kan XZ, Li XF, Lei ZP, Wang M, et al. (2010). Complete mitochondrial genome of Cabot's tragopan, Tragopan caboti (Galliformes: Phasianidae). Genet. Mol. Res. 9: 1204-1216. http://dx.doi.org/10.4238/vol9-2gmr820 PMid:20589618   Kimball RT, Braun EL, Zwartjes PW, Crowe TM, et al. (1999). A molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic. Mol. Phylogenet. Evol. 11: 38-54. http://dx.doi.org/10.1006/mpev.1998.0562 PMid:10082609   Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036   Livezey BC and Zusi RL (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 149: 1-95. http://dx.doi.org/10.1111/j.1096-3642.2006.00293.x PMid:18784798 PMCid:2517308   Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, et al. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim. Genet. 32: 380-385. http://dx.doi.org/10.1046/j.1365-2052.2001.00795.x PMid:11736810   Nishibori M, Tsudzuki M, Hayashi T, Yamamoto Y, et al. (2002). Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species. J. Hered. 93: 439-444. http://dx.doi.org/10.1093/jhered/93.6.439 PMid:12642645   Nishibori M, Hayashi T and Yasue H (2004). Complete nucleotide sequence of Numida meleagris (Helmeted guineafowl) mitochondrial genome. J. Poult. Sci. 41: 259-268. http://dx.doi.org/10.2141/jpsa.41.259   Nishibori M, Shimogiri T, Hayashi T and Yasue H (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Anim. Genet. 36: 367-375. http://dx.doi.org/10.1111/j.1365-2052.2005.01318.x PMid:16167978   Pereira SL and Baker AJ (2009). Waterfowl and Gamefowl (Galloanserae). In: The Timetree of Life (Hedges SB and Kumar S, eds.). Oxford University Press, New York, 415-418. PMCid:2719981   Peters JL (1934). Checklist of the Birds of the World. Vol. 2. Harvard University Press, Cambridge.   Posada D (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083 PMid:18397919   Rich PV and van Tets GF (1985). Kadimakara: Extinct Vertebrates of Australia. Pioneer Design Studio, Lilydale.   Shen YY, Shi P, Sun YB and Zhang YP (2009). Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 19: 1760-1765. http://dx.doi.org/10.1101/gr.093138.109 PMid:19617397 PMCid:2765268   Sibley CG and Ahlquist J (1990). Phylogeny and Classification of the Birds. Yale University Press, New Haven.   Sibley CG and Monroe BL (1990). The Distribution and Taxonomy of the Birds of the Word. Yale University Press, New Haven.   Sibley C, Ahlquist JE and Monroe BL (1988). A classification of the living birds of the world based on DNA-DNA hybridization studies. Auk 105: 409-423.   Slack KE, Delsuc F, McLenachan PA, Arnason U, et al. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Mol. Phylogenet. Evol. 42: 1-13. http://dx.doi.org/10.1016/j.ympev.2006.06.002 PMid:16854605   Swofford D (2002). PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates, Inc., Sunderland. PMid:12504223   Talavera G and Castresana J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-577. http://dx.doi.org/10.1080/10635150701472164 PMid:17654362   Van Tuinen M and Dyke GJ (2004). Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Mol. Phylogenet. Evol. 30: 74-86. http://dx.doi.org/10.1016/S1055-7903(03)00164-7   Wetmore A (1960). A classification for the birds of the world. Smithson. Misc. Collect. 139: 1-37.   Wolstenholme DR (1992). Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141: 173-216. http://dx.doi.org/10.1016/S0074-7696(08)62066-5   Xia X and Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. http://dx.doi.org/10.1093/jhered/92.4.371 PMid:11535656   Xia X, Xie Z, Salemi M, Chen L, et al. (2003). An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26: 1-7. http://dx.doi.org/10.1016/S1055-7903(02)00326-3