Publications

Found 4 results
Filters: Author is M. Taheri  [Clear All Filters]
2013
G. Bahari, Hashemi, M., Taheri, M., Naderi, M., Moazeni-Roodi, A., Kouhpayeh, H. R., and Eskandari-Nasab, E., Association of P2X7 gene polymorphisms with susceptibility to pulmonary tuberculosis in Zahedan, Southeast Iran, vol. 12, pp. 160-166, 2013.
Ben-Selma W, Ben-Kahla I, Boukadida J and Harizi H (2011). Contribution of the P2X7 1513A/C loss-of-function polymorphism to extrapulmonary tuberculosis susceptibility in Tunisian populations. FEMS Immunol. Med. Microbiol. 63: 65-72. http://dx.doi.org/10.1111/j.1574-695X.2011.00824.x PMid:21635566   Britton WJ, Fernando SL, Saunders BM, Sluyter R, et al. (2007). The genetic control of susceptibility to Mycobacterium tuberculosis. Novartis Found. Symp. 281: 79-89. http://dx.doi.org/10.1002/9780470062128.ch8 PMid:17534067   Coutinho-Silva R, Stahl L, Raymond MN, Jungas T, et al. (2003). Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19: 403-412. http://dx.doi.org/10.1016/S1074-7613(03)00235-8   Fernando SL, Saunders BM, Sluyter R, Skarratt KK, et al. (2005). Gene dosage determines the negative effects of polymorphic alleles of the P2X7 receptor on adenosine triphosphate-mediated killing of mycobacteria by human macrophages. J. Infect. Dis. 192: 149-155. http://dx.doi.org/10.1086/430622 PMid:15942904   Fernando SL, Saunders BM, Sluyter R, Skarratt KK, et al. (2007). A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 175: 360-366. http://dx.doi.org/10.1164/rccm.200607-970OC PMid:17095747   Gu BJ, Zhang W, Worthington RA, Sluyter R, et al. (2001). A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J. Biol. Chem. 276: 11135-11142. http://dx.doi.org/10.1074/jbc.M010353200 PMid:11150303   Gu BJ, Sluyter R, Skarratt KK, Shemon AN, et al. (2004). An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J. Biol. Chem. 279: 31287-31295. http://dx.doi.org/10.1074/jbc.M313902200 PMid:15123679   Haas SL, Ruether A, Singer MV, Schreiber S, et al. (2007). Functional P2X7 receptor polymorphisms (His155Tyr, Arg307Gln, Glu496Ala) in patients with Crohn's disease. Scand. J. Immunol. 65: 166-170. http://dx.doi.org/10.1111/j.1365-3083.2006.01876.x PMid:17257221   Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010a). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589   Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010b). The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis. Genet. Mol. Res. 9: 1735-1741. http://dx.doi.org/10.4238/vol9-3gmr893 PMid:20812194   Hashemi M, Sharifi-Mood B, Nezamdoost M, Moazeni-Roodi A, et al. (2011). Functional polymorphism of interferon-gamma (IFN-gamma) gene +874T/A polymorphism is associated with pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med. Rep. 112: 38-43. PMid:21470497   Hashemi M, Moazeni-Roodi A, Bahari A and Taheri M (2012). A tetra-primer amplification refractory mutation system-polymerase chain reaction for the detection of rs8099917 IL28B genotype. Nucleosides Nucleotides Nucleic Acids 31: 55-60. http://dx.doi.org/10.1080/15257770.2011.643846 PMid:22257210   Humphreys BD, Rice J, Kertesy SB and Dubyak GR (2000). Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J. Biol. Chem. 275: 26792-26798. PMid:10854431   Khakh BS and North RA (2006). P2X receptors as cell-surface ATP sensors in health and disease. Nature 442: 527-532. http://dx.doi.org/10.1038/nature04886 PMid:16885977   Kouhpayeh HR, Hashemi M, Hashemi SA, Moazeni-Roodi A, et al. (2012). R620W functional polymorphism of protein tyrosine phosphatase non-receptor type 22 is not associated with pulmonary tuberculosis in Zahedan, southeast Iran. Genet. Mol. Res. 11: 1075-1081. http://dx.doi.org/10.4238/2012.April.27.6 PMid:22614276   Kusner DJ and Barton JA (2001). ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J. Immunol. 167: 3308-3315. PMid:11544319   Li CM, Campbell SJ, Kumararatne DS, Bellamy R, et al. (2002). Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population. J. Infect. Dis. 186: 1458-1462. http://dx.doi.org/10.1086/344351 PMid:12404161   Mokrousov I, Sapozhnikova N and Narvskaya O (2008). Mycobacterium tuberculosis co-existence with humans: making an imprint on the macrophage P2X(7) receptor gene? J. Med. Microbiol. 57: 581-584. http://dx.doi.org/10.1099/jmm.0.47455-0 PMid:18436590   Naderi M, Hashemi M, Kouhpayeh H and Ahmadi R (2009). The status of serum procalcitonin in pulmonary tuberculosis and nontuberculosis pulmonary disease. J. Pak. Med. Assoc. 59: 647-648. PMid:19750868   Naderi M, Hashemi M, Mehdizadeh A, Mehrabifar H, et al. (2010). Serum adenosine deaminase activity and the total antioxidant capacity of plasma in pulmonary tuberculosis and non-tuberculosis pulmonary disease. Turk. J. Med. Sci. 40: 701-706.   Nino-Moreno P, Portales-Perez D, Hernandez-Castro B, Portales-Cervantes L, et al. (2007). P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin. Exp. Immunol. 148: 469-477. http://dx.doi.org/10.1111/j.1365-2249.2007.03359.x PMid:17493019 PMCid:1941940   Sambasivan V, Murthy KJ, Reddy R, Vijayalakshimi V, et al. (2010). P2X7 gene polymorphisms and risk assessment for pulmonary tuberculosis in Asian Indians. Dis. Markers 28: 43-48. PMid:20164546   Sharma S, Kumar V, Khosla R, Kajal N, et al. (2010). Association of P2X7 receptor +1513 (A→C) polymorphism with tuberculosis in a Punjabi population. Int. J. Tuberc. Lung. Dis. 14: 1159-1163. PMid:20819262   Shemon AN, Sluyter R, Fernando SL, Clarke AL, et al. (2006). A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J. Biol. Chem. 281: 2079-2086. http://dx.doi.org/10.1074/jbc.M507816200 PMid:16263709   Singla N, Gupta D, Joshi A, Batra N, et al. (2012). Genetic polymorphisms in the P2X7 gene and its association with susceptibility to tuberculosis. Int. J. Tuberc. Lung. Dis. 16: 224-229. http://dx.doi.org/10.5588/ijtld.11.0076 PMid:22137490   Sluyter R and Stokes L (2011). Significance of P2X7 receptor variants to human health and disease. Recent Pat. DNA Gene Seq. 5: 41-54. http://dx.doi.org/10.2174/187221511794839219 PMid:21303345   Wang X, Xiao H, Lan H, Mao C, et al. (2011). Lack of association between the P2X7 receptor A1513C polymorphism and susceptibility to pulmonary tuberculosis: a meta-analysis. Respirology 16: 790-795. http://dx.doi.org/10.1111/j.1440-1843.2011.01976.x PMid:21470339   Wiley JS, Dao-Ung LP, Li C, Shemon AN, et al. (2003). An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J. Biol. Chem. 278: 17108-17113. http://dx.doi.org/10.1074/jbc.M212759200 PMid:12586825   World Health Organization (2008). Global Tuberculosis Control: Surveillance, Planning, Financing. World Health Organization, Geneva.   Xiao J, Sun L, Jiao W, Li Z, et al. (2009). Lack of association between polymorphisms in the P2X7 gene and tuberculosis in a Chinese Han population. FEMS Immunol. Med. Microbiol. 55: 107-111. http://dx.doi.org/10.1111/j.1574-695X.2008.00508.x PMid:19076224   Xiao J, Sun L, Yan H, Jiao W, et al. (2010). Metaanalysis of P2X7 gene polymorphisms and tuberculosis susceptibility. FEMS Immunol. Med. Microbiol. 60: 165-170. http://dx.doi.org/10.1111/j.1574-695X.2010.00735.x PMid:20846359
2012
H. - R. Kouhpayeh, Hashemi, M., Hashemi, S. - A., Moazeni-Roodi, A., Naderi, M., Sharifi-Mood, B., Taheri, M., Mohammadi, M., and Ghavami, S., R620W functional polymorphism of protein tyrosine phosphatase non-receptor type 22 is not associated with pulmonary tuberculosis in Zahedan, southeast Iran, vol. 11, pp. 1075-1081, 2012.
Ban Y, Tozaki T, Taniyama M and Tomita M (2005). The codon 620 single nucleotide polymorphism of the protein tyrosine phosphatase-22 gene does not contribute to autoimmune thyroid disease susceptibility in the Japanese. Thyroid 15: 1115-1118. http://dx.doi.org/10.1089/thy.2005.15.1115 PMid:16279843 Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75: 330-337. http://dx.doi.org/10.1086/422827 PMid:15208781 Bellamy R, Beyers N, McAdam KP, Ruwende C, et al. (2000). Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc. Natl. Acad. Sci. U. S. A. 97: 8005-8009. http://dx.doi.org/10.1073/pnas.140201897 PMid:10859364 Bottini N, Musumeci L, Alonso A, Rahmouni S, et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36: 337-338. http://dx.doi.org/10.1038/ng1323 PMid:15004560 Bravo MJ, Colmenero JD, Queipo-Ortuno MI, Morata P, et al. (2009). PTPN22 C1858T polymorphism and human brucellosis. Scand J. Infect. Dis. 41: 109-112. http://dx.doi.org/10.1080/00365540802641864 PMid:19107641 Cervino AC, Lakiss S, Sow O, Bellamy R, et al. (2002). Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11-13 in African families. Hum. Mol. Genet. 11: 1599-1603. http://dx.doi.org/10.1093/hmg/11.14.1599 PMid:12075004 Chabchoub G, Maalej A, Petit-Teixeira E, Glikmans E, et al. (2006). Polymorphisms in the protein tyrosine phosphatase (PTPN22) gene is not associated with autoimmune thyroid in a large affected Tunisian family. Clin. Immunol. 120: 235-236. http://dx.doi.org/10.1016/j.clim.2006.04.565 PMid:16765647 Chabchoub G, Teixiera EP, Maalej A, Ben HM, et al. (2009). The R620W polymorphism of the protein tyrosine phosphatase 22 gene in autoimmune thyroid diseases and rheumatoid arthritis in the Tunisian population. Ann. Hum. Biol. 36: 342-349. http://dx.doi.org/10.1080/03014460902817968 PMid:19343596 Chelala C, Duchatelet S, Joffret ML, Bergholdt R, et al. (2007). PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 56: 522-526. http://dx.doi.org/10.2337/db06-0942 PMid:17259401 Cohen S, Dadi H, Shaoul E, Sharfe N, et al. (1999). Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93: 2013-2024. Comstock GW (1978). Tuberculosis in twins: a re-analysis of the Prophit survey. Am. Rev. Respir. Dis. 117: 621-624. PMid:565607 Douroudis K, Prans E, Haller K, Nemvalts V, et al. (2008). Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue Antigens 72: 425-430. http://dx.doi.org/10.1111/j.1399-0039.2008.01115.x PMid:18764813 Gomez LM, Anaya JM, Gonzalez CI, Pineda-Tamayo R, et al. (2005a). PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun. 6: 628-631. http://dx.doi.org/10.1038/sj.gene.6364261 PMid:16163373 Gomez LM, Anaya JM and Martin J (2005b). Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum. Immunol. 66: 1242-1247. http://dx.doi.org/10.1016/j.humimm.2005.11.008 PMid:16690411 Guide SV and Holland SM (2002). Host susceptibility factors in mycobacterial infection. Genetics and body morphotype. Infect. Dis. Clin. North Am. 16: 163-186. http://dx.doi.org/10.1016/S0891-5520(03)00051-5 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010a). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589 Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010b). The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis. Genet. Mol. Res. 9: 1735-1741. http://dx.doi.org/10.4238/vol9-3gmr893 PMid:20812194 Hashemi M, Hoseini H, Yaghmaei P, Moazeni-Roodi A, et al. (2011a). Association of polymorphisms in glutamate-cysteine ligase catalytic subunit and microsomal triglyceride transfer protein genes with nonalcoholic fatty liver disease. DNA Cell Biol. 30: 569-575. http://dx.doi.org/10.1089/dna.2010.1162 PMid:21438662 Hashemi M, Sharifi-Mood B, Nezamdoost M, Moazeni-Roodi A, et al. (2011b). Functional polymorphism of interferon-gamma (IFN-gamma) gene +874T/A polymorphism is associated with pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med. Rep. 112: 38-43. PMid:21470497 Hermiston ML, Xu Z, Majeti R and Weiss A (2002). Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J. Clin. Invest. 109: 9-14. PMid:11781344 PMCid:150828 Hill RJ, Zozulya S, Lu YL, Ward K, et al. (2002). The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp. Hematol. 30: 237-244. http://dx.doi.org/10.1016/S0301-472X(01)00794-9 Hinks A, Worthington J and Thomson W (2006). The association of PTPN22 with rheumatoid arthritis and juvenile idiopathic arthritis. Rheumatology 45: 365-368. http://dx.doi.org/10.1093/rheumatology/kel005 PMid:16418195 Ikegami H, Kawabata Y, Noso S, Fujisawa T, et al. (2007). Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res. Clin. Pract. 77 (Suppl 1): S116-S121. http://dx.doi.org/10.1016/j.diabres.2007.01.044 PMid:17452059 Jagiello P, Aries P, Arning L, Wagenleiter SE, et al. (2005). The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum. 52: 4039-4043. http://dx.doi.org/10.1002/art.21487 Lamsyah H, Rueda B, Baassi L, Elaouad R, et al. (2009). Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue Antigens 74: 228-232. http://dx.doi.org/10.1111/j.1399-0039.2009.01304.x PMid:19563523 Lee YH, Rho YH, Choi SJ, Ji JD, et al. (2007). The PTPN22 C1858T functional polymorphism and autoimmune diseases - a meta-analysis. Rheumatology 46: 49-56. http://dx.doi.org/10.1093/rheumatology/kel170 PMid:16760194 Mori M, Yamada R, Kobayashi K, Kawaida R, et al. (2005). Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 50: 264-266. http://dx.doi.org/10.1007/s10038-005-0246-8 PMid:15883854 Mustelin T, Brockdorff J, Rudbeck L, Gjorloff-Wingren A, et al. (1999). The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Cell Signal. 11: 637-650. http://dx.doi.org/10.1016/S0898-6568(99)00016-9 Mustelin T, Abraham RT, Rudd CE, Alonso A, et al. (2002). Protein tyrosine phosphorylation in T cell signaling. Front Biosci. 7: d918-d969. http://dx.doi.org/10.2741/musteli1 PMid:11897562 Naderi M, Hashemi M, Kouhpayeh H and Ahmadi R (2009). The status of serum procalcitonin in pulmonary tuberculosis and nontuberculosis pulmonary disease. J. Pak. Med. Assoc. 59: 647-648. PMid:19750868 Naderi M, Hashemi M, Mehdizadeh A and Mehrabifar H (2010). Serum adenosine deaminase activity and total antioxidant capacity of plasma in pulmonary tuberculosis and non-tuberculosis pulmonary disease. Turk. J. Med. Sci. 40: 701-706. North RJ and Jung YJ (2004). Immunity to tuberculosis. Annu. Rev. Immunol. 22: 599-623. http://dx.doi.org/10.1146/annurev.immunol.22.012703.104635 PMid:15032590 Orozco G, Sanchez E, Gonzalez-Gay MA, Lopez-Nevot MA, et al. (2005). Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52: 219-224. http://dx.doi.org/10.1002/art.20771 Porter JD and McAdam KP (1994). The re-emergence of tuberculosis. Annu. Rev. Public Health 15: 303-323. http://dx.doi.org/10.1146/annurev.pu.15.050194.001511 PMid:8054087 Qu HQ, Fisher-Hoch SP and McCormick JB (2011). Molecular immunity to mycobacteria: knowledge from the mutation and phenotype spectrum analysis of Mendelian susceptibility to mycobacterial diseases. Int. J. Infect. Dis. 15: e305-e313. http://dx.doi.org/10.1016/j.ijid.2011.01.004 PMid:21330176 PMCid:3078969 Reddy MV, Johansson M, Sturfelt G, Jonsen A, et al. (2005). The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun. 6: 658-662. PMid:16052172 Seldin MF, Shigeta R, Laiho K, Li H, et al. (2005). Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun. 6: 720-722. PMid:16107870 Veillette A, Latour S and Davidson D (2002). Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20: 669-707. http://dx.doi.org/10.1146/annurev.immunol.20.081501.130710 PMid:11861615 Wipff J, Allanore Y, Kahan A, Meyer O, et al. (2006). Lack of association between the protein tyrosine phosphatase non-receptor 22 (PTPN22)*620W allele and systemic sclerosis in the French Caucasian population. Ann. Rheum. Dis. 65: 1230-1232. http://dx.doi.org/10.1136/ard.2005.048181 PMid:16464986 PMCid:1798267 Zhang ZH, Chen F, Zhang XL, Jin Y, et al. (2008). PTPN22 allele polymorphisms in 15 Chinese populations. Int. J. Immunogenet. 35: 433-437. http://dx.doi.org/10.1111/j.1744-313X.2008.00803.x PMid:19046301
2010
M. Taheri, Mahjoubi, F., and Omranipour, R., Effect of MDR1 polymorphism on multidrug resistance expression in breast cancer patients, vol. 9, pp. 34-40, 2010.
Atalay C, Deliloglu GI, Irkkan C and Gunduz U (2006). Multidrug resistance in locally advanced breast cancer. Tumour Biol. 27: 309-318. http://dx.doi.org/10.1159/000096086 PMid:17033200   Chang H, Rha SY, Jeung HC, Im CK, et al. (2009). Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann. Oncol. 20: 272-277. http://dx.doi.org/10.1093/annonc/mdn624 PMid:18836089   Decleves X, Fajac A, Lehmann-Che J, Tardy M, et al. (2002). Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines. Int. J. Cancer 98: 173-180. http://dx.doi.org/10.1002/ijc.10135 PMid:11857404   Golalipour M, Mahjoubi F, Sanati MH and Alimoghaddam K (2007). Gene dosage is not responsible for the upregulation of MRP1 gene expression in adult leukemia patients. Arch. Med. Res. 38: 297-304. http://dx.doi.org/10.1016/j.arcmed.2006.10.016 PMid:17350479   Gottesman MM, Fojo T and Bates SE (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2: 48-58. http://dx.doi.org/10.1038/nrc706 PMid:11902585   Hoffmeyer S, Burk O, von Richter O, Arnold HP, et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A. 97: 3473-3478. http://dx.doi.org/10.1073/pnas.97.7.3473 PMid:10716719 PMCid:16264   Jamroziak K, Mlynarski W, Balcerczak E, Mistygacz M, et al. (2004). Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur. J. Haematol. 72: 314-321. http://dx.doi.org/10.1111/j.1600-0609.2004.00228.x PMid:15059065   Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528. http://dx.doi.org/10.1126/science.1135308 PMid:17185560   Kurzawski M, Drozdzik M, Suchy J, Kurzawski G, et al. (2005). Polymorphism in the P-glycoprotein drug transporter MDR1 gene in colon cancer patients. Eur. J. Clin. Pharmacol. 61: 389-394. http://dx.doi.org/10.1007/s00228-005-0926-5 PMid:15912392   Linn SC, Giaccone G, van Diest PJ, Blokhuis WM, et al. (1995). Prognostic relevance of P-glycoprotein expression in breast cancer. Ann. Oncol. 6: 679-685. PMid:8664189   Rodrigues FF, Santos RE, Melo MB, Silva MA, et al. (2008). Correlation of polymorphism C3435T of the MDR-1 gene and the response of primary chemotherapy in women with locally advanced breast cancer. Genet. Mol. Res. 7: 177-183. http://dx.doi.org/10.4238/vol7-1gmr400 PMid:18393221   Sakaeda T (2005). MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab. Pharmacokinet. 20: 391-414. http://dx.doi.org/10.2133/dmpk.20.391 PMid:16415525   Turgut S, Yaren A, Kursunluoglu R and Turgut G (2007). MDR1 C3435T polymorphism in patients with breast cancer. Arch. Med. Res. 38: 539-544. http://dx.doi.org/10.1016/j.arcmed.2007.02.005 PMid:17560460   Urayama KY, Wiencke JK, Buffler PL and Wiemels JL (2002). The role of MDR-1 gene polymorphisms in the genetic susceptibility to childhood leukemia. Ann. Epidemiol. 12: 497. http://dx.doi.org/10.1016/S1047-2797(02)00309-5   van der Deen M, de Vries EG, Timens W, Scheper RJ, et al. (2005). ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir. Res. 6: 59. http://dx.doi.org/10.1186/1465-9921-6-59 PMid:15967026 PMCid:1200430
M. Hashemi, Moazeni-Roodi, A. K., Fazaeli, A., Sandoughi, M., Taheri, M., Bardestani, G. R., Zakeri, Z., Kordi-Tamandani, D. M., and Ghavami, S., The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis, vol. 9, pp. 1735-1741, 2010.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Aviram M, Rosenblat M, Bisgaier CL, Newton RS, et al. (1998). Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest. 101: 1581-1590. http://dx.doi.org/10.1172/JCI1649 PMid:9541487 PMCid:508738   Aviram M, Hardak E, Vaya J, Mahmood S, et al. (2000). Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 101: 2510-2517. http://dx.doi.org/10.1161/01.CIR.101.21.2510 PMid:10831526   Baskol G, Demir H, Baskol M, Kilic E, et al. (2005). Assessment of paraoxonase 1 activity and malondialdehyde levels in patients with rheumatoid arthritis. Clin. Biochem. 38: 951-955. http://dx.doi.org/10.1016/j.clinbiochem.2005.06.010 PMid:16055108   Bauerova K and Bezek A (1999). Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen. Physiol. Biophys. 18 (Spec No.): 15-20.   Blatter MC, James RW, Messmer S, Barja F, et al. (1993). Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur. J. Biochem. 211: 871-879. http://dx.doi.org/10.1111/j.1432-1033.1993.tb17620.x PMid:8382160   Deighton CM and Walker DJ (1991). The familial nature of rheumatoid arthritis. Ann. Rheum. Dis. 50: 62-65. http://dx.doi.org/10.1136/ard.50.1.62 PMid:1994873 PMCid:1004331   Feingold KR, Memon RA, Moser AH and Grunfeld C (1998). Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139: 307-315. http://dx.doi.org/10.1016/S0021-9150(98)00084-7   Gambhir JK, Lali P and Jain AK (1997). Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin. Biochem. 30: 351-355. http://dx.doi.org/10.1016/S0009-9120(96)00007-0   Gan KN, Smolen A, Eckerson HW and La Du BN (1991). Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab. Dispos. 19: 100-106. PMid:1673382   Garin MC, James RW, Dussoix P, Blanche H, et al. (1997). Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J. Clin. Invest. 99: 62-66. http://dx.doi.org/10.1172/JCI119134 PMid:9011577 PMCid:507768   Griffiths HR and Lunec J (1996). The C1q binding activity of IgG is modified in vitro by reactive oxygen species: implications for rheumatoid arthritis. FEBS Lett. 388: 161-164. http://dx.doi.org/10.1016/0014-5793(96)00542-X   Halliwell B (1994). Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721-724. http://dx.doi.org/10.1016/S0140-6736(94)92211-X   Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589   Humbert R, Adler DA, Disteche CM, Hassett C, et al. (1993). The molecular basis of the human serum paraoxonase activity polymorphism. Nat. Genet. 3: 73-76. http://dx.doi.org/10.1038/ng0193-73 PMid:8098250   Isik A, Koca SS, Ustundag B, Celik H, et al. (2007). Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin. Rheumatol. 26: 342-348. http://dx.doi.org/10.1007/s10067-006-0300-8 PMid:16642406   Jaswal S, Mehta HC, Sood AK and Kaur J (2003). Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin. Chim. Acta 338: 123-129. http://dx.doi.org/10.1016/j.cccn.2003.08.011 PMid:14637276   Leviev I and James RW (2000). Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler. Thromb. Vasc. Biol. 20: 516-521. http://dx.doi.org/10.1161/01.ATV.20.2.516 PMid:10669651   Leviev I, Negro F and James RW (1997). Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler. Thromb. Vasc. Biol. 17: 2935-2939. http://dx.doi.org/10.1161/01.ATV.17.11.2935 PMid:9409279   Mackness B, Mackness MI, Arrol S, Turkie W, et al. (1998). Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett. 423: 57-60. http://dx.doi.org/10.1016/S0014-5793(98)00064-7   Mackness MI, Mackness B, Durrington PN, Connelly PW, et al. (1996). Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr. Opin. Lipidol. 7: 69-76. http://dx.doi.org/10.1097/00041433-199604000-00004 PMid:8743898   Maury CP, Junge W and Teppo AM (1984). Serum esterase activity in reactive systemic amyloidosis and its relation to amyloid A degrading activity. J. Lab. Clin. Med. 104: 761-766. PMid:6092501   McKeown MJ, Hall ND and Corvalan JR (1984). Defective monocyte accessory function due to surface sulphydryl (SH) oxidation in rheumatoid arthritis. Clin. Exp. Immunol. 56: 607-613. PMid:6744663 PMCid:1536001   Miesel R, Murphy MP and Kroger H (1996). Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radic. Res. 25: 161-169. http://dx.doi.org/10.3109/10715769609149921 PMid:8885334   Nurcombe HL, Bucknall RC and Edwards SW (1991). Activation of the neutrophil myeloperoxidase-H2O2 system by synovial fluid isolated from patients with rheumatoid arthritis. Ann. Rheum. Dis. 50: 237-242. http://dx.doi.org/10.1136/ard.50.4.237 PMid:1851410 PMCid:1004393   Popa C, van Tits LJ, Barrera P, Lemmers HL, et al. (2009). Anti-inflammatory therapy with tumour necrosis factor alpha inhibitors improves high-density lipoprotein cholesterol antioxidative capacity in rheumatoid arthritis patients. Ann. Rheum. Dis. 68: 868-872. http://dx.doi.org/10.1136/ard.2008.092171 PMid:18635596   Primo-Parmo SL, Sorenson RC, Teiber J and La Du BN (1996). The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33: 498-507. http://dx.doi.org/10.1006/geno.1996.0225 PMid:8661009   Ridderstad A, Abedi-Valugerdi M and Moller E (1991). Cytokines in rheumatoid arthritis. Ann. Med. 23: 219-223. http://dx.doi.org/10.3109/07853899109148051 PMid:1930911   Rozenberg O, Rosenblat M, Coleman R, Shih DM, et al. (2003). Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic. Biol. Med. 34: 774-784. http://dx.doi.org/10.1016/S0891-5849(02)01429-6   Sattar N, McCarey DW, Capell H and McInnes IB (2003). Explaining how "high-grade" systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108: 2957-2963. http://dx.doi.org/10.1161/01.CIR.0000099844.31524.05 PMid:14676136   Shih DM, Gu L, Xia YR, Navab M, et al. (1998). Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394: 284-287. http://dx.doi.org/10.1038/28406 PMid:9685159   Tanimoto N, Kumon Y, Suehiro T, Ohkubo S, et al. (2003). Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci. 72: 2877-2885. http://dx.doi.org/10.1016/S0024-3205(03)00195-4   Ye S, Dhillon S, Ke X, Collins AR, et al. (2001). An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 29: E88. http://dx.doi.org/10.1093/nar/29.17.e88 PMid:11522844 PMCid:55900   Zwerina J, Redlich K, Schett G and Smolen JS (2005). Pathogenesis of rheumatoid arthritis: targeting cytokines. Ann. N. Y. Acad. Sci. 1051: 716-729. http://dx.doi.org/10.1196/annals.1361.116 PMid:16127012