Publications
Found 1 results
Filters: Author is M.L. Tian [Clear All Filters]
“Variation characteristics of the nitrate reductase gene of key inbred maize lines and derived lines in China”, vol. 9, pp. 1824-1835, 2010.
, Ali ML, Taylor JH, Jie L, Sun G, et al. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521-533.
http://dx.doi.org/10.1139/g05-014
PMid:16121248
Appenroth K, Meco R, Jourdan VV and Lillo C (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56.
http://dx.doi.org/10.1016/S0168-9452(00)00323-X
Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Ver. Plant Physiol. Plant. Mol. Biol. 50: 277-303.
http://dx.doi.org/10.1146/annurev.arplant.50.1.277
PMid:15012211
Chen Y, Chao Q, Tan G, Zhao J, et al. (2008). Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117: 1241-1252.
http://dx.doi.org/10.1007/s00122-008-0858-4
PMid:18762906
Chuanchai P, Tan XI, Silapapun A and Suthipong P (2010). Early hybrid testing in tropical maize: are molecular markers useful for selecting the parental component? Kasetsart J. Nat. Sci. 44: 70-78.
Desikan R, Griffiths R, Hancock J and Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99: 16314-16318.
http://dx.doi.org/10.1073/pnas.252461999
PMid:12446847 PMCid:138608
Foyer CH, Valadier MH, Migge A and Becker TW (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292.
http://dx.doi.org/10.1104/pp.117.1.283
PMid:9576798 PMCid:35013
Fulton TM, Chunwongse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209.
http://dx.doi.org/10.1007/BF02670897
Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994). Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674.
PMid:12232440 PMCid:159711
Kolbert Z and Erdei L (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav. 3: 972-973.
PMid:19704423 PMCid:2633746
Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, et al. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113: 821-830.
http://dx.doi.org/10.1007/s00122-006-0334-y
PMid:16896717
Legesse BW, Myburg AA, Pixley KV and Botha AM (2007). Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144: 10-17.
http://dx.doi.org/10.1111/j.2006.0018-0661.01921.x
PMid:17567435
Li SS (1997). Selection and application of maize inbred line huangzaosi. Beijing Agric. Sci. 15: 19-21.
Li DH, Mao LH, Yang JS and Liu JG (2005). Breeding process and utilization of excellent maize inbred line 478. J. Laiyang Agric. Coll. 22: 159-164.
http://dx.doi.org/10.1007/s10595-005-0075-7
Li XH, Yuan LX, Li XH and Zhang SH (2003). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci. Agric. Sinica 36: 622-627.
Li Y, Wang Y, Wei M and Li X (2009). QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. Genet. 88: 61-66.
http://dx.doi.org/10.1007/s12041-009-0008-z
PMid:19417545
Lu BL, Zhao WY and Liu RZ (2004). The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China. J. Maize Sci. 12: 127-128.
Lu Y, Yan J, Guimaraes CT, Taba S, et al. (2009). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120: 93-115.
http://dx.doi.org/10.1007/s00122-009-1162-7
PMid:19823800
Menkir A, Kling JG, Badu-Apraku B and Ingelbrecht I (2005). Molecular marker-based genetic diversity assessment of striga-resistant maize inbred lines. Theor. Appl. Genet. 110: 1145-1153.
http://dx.doi.org/10.1007/s00122-005-1946-3
PMid:15750826
Ning JL, Gao HM, Qu G and Yu B (2002). Utilization of inbred lines of Ludahonggu group in corn breeding and production in China. Rain Fed. Crops 22: 63-65.
Qu G, Xu WW, Chen DY and Li FZ (2002). Selection and application of superior maize inbred line Dan340. J. Maize Sci. 10: 30-33.
Schrag TA, Mohring J, Melchinger AE, Kusterer B, et al. (2010). Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120: 451-461.
http://dx.doi.org/10.1007/s00122-009-1208-x
PMid:19916002
Sivasankar S and Oaks A (1995). Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine). Plant Physiol. 107: 1225-1231.
PMid:12228428 PMCid:157256
Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agric. 88: 745-755.
http://dx.doi.org/10.1002/jsfa.3154
Stöhr C and Ullrich WR (1997). A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132.
http://dx.doi.org/10.1007/s00050173
Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228.
http://dx.doi.org/10.1007/s00122-007-0512-6
PMid:17308934
Taramino G and Tingey S (1996). Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287.
http://dx.doi.org/10.1139/g96-038
PMid:8984002
Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139.
http://dx.doi.org/10.1007/s00122-008-0851-y
PMid:18677461
Wang YB, Wang ZH, Wang YP and Zhang X (1997). The analysis of heterotic group and improve of Chinese maize germplasm. Acta Agric. Boreali-Sinica 13: 74-80.
Xu SX, Liu J and Liu GS (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141: 207-215.
http://dx.doi.org/10.1111/j.1601-5223.2004.01865.x
PMid:15703037
Xu YR, Liu XE, Sun FM and Jiao RH (2006). The application of Mo17 and derived in Chinese. J. Jilin Agric. Sci. 31: 26-28.
Yan JB, Tang H, Huang YQ, Shi YG, et al. (2003). Genomic analysis of plant height in maize through molecular marker. Sci. Agric. Sinica 10: 1069-1075.
Zeng SX, Ren R and Liu XZ (1996). The important position of huangzaosi in maize breeding and production in China. J. Maize Sci. 4: 1-6.
Zhang SH (2005). Maize Production and Research in China: Advancement and Challenges, p. 3. In: Proceedings of the Ninth Asia Regional Maize Workshop, September 5-9, Beijing.
Zhang JH, Zhang JY, Yang XH, Jin H, et al. (2007). A study on genetic relationship of main maize inbred lines in Yunnan by SSR markers. J. Maize Sci. 15: 30-35.
Zhuang QS (2003). Chinese Wheat Improvement and Pedigree Analysis. Agricultural Publishing House, Beijing.