Found 7 results
Filters: Author is Y.B. Wang  [Clear All Filters]
L. Q. Han, Pang, K., Li, H. J., Zhu, S. B., Wang, L. F., Wang, Y. B., Yang, G. Q., and Yang, G. Y., Conjugated linoleic acid-induced milk fat reduction associated with depressed expression of lipogenic genes in lactating Holstein mammary glands, vol. 11, pp. 4754-4764, 2012.
Barber MC, Vallance AJ, Kennedy HT and Travers MT (2003). Induction of transcripts derived from promoter III of the acetyl-CoA carboxylase-alpha gene in mammary gland is associated with recruitment of SREBP-1 to a region of the proximal promoter defined by a DNase I hypersensitive site. Biochem. J. 375: 489-501. PMid:12871210 PMCid:1223696   Bauman DE and Griinari JM (2003). Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 23: 203-227. PMid:12626693   Bauman DE, Perfield JW, Harvatine KJ and Baumgard LH (2008). Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. J. Nutr. 138: 403-409. Baumgard LH, Corl BA, Dwyer DA, Saebo A, et al. (2000). Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am. J. Physiol. Regul. Integr. Comp Physiol. 278: R179-R184.   Baumgard LH, Sangster JK and Bauman DE (2001). Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA). J. Nutr. 131: 1764-1769. PMid:11385065   Baumgard LH, Matitashvili E, Corl BA, Dwyer DA, et al. (2002). trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J. Dairy Sci. 85: 2155-2163.   Belury MA (2002). Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu. Rev. Nutr. 22: 505-531. PMid:12055356   Bernard L, Leroux C and Chilliard Y (2008). Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 606: 67-108. PMid:18183925   Bionaz M and Loor JJ (2008). Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC. Genomics 9: 366. PMid:18671863 PMCid:2547860   Chouinard PY, Corneau L, Barbano DM, Metzger LE, et al. (1999). Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J Nutr. 129: 1579-1584. PMid:10419994   Gervais R, McFadden JW, Lengi AJ, Corl BA, et al. (2009). Effects of intravenous infusion of trans-10, cis-12 18:2 on mammary lipid metabolism in lactating dairy cows. J. Dairy Sci. 92: 5167-5177. PMid:19762835   Giesy JG, McGuire MA, Shafii B and Hanson TW (2002). Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in midlactation holstein cows. J. Dairy Sci. 85: 2023-2029.   Griinari JM, Corl BA, Lacy SH, Chouinard PY, et al. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J. Nutr. 130: 2285-2291. PMid:10958825   Harvatine KJ and Bauman DE (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136: 2468-2474. PMid:16988111   Huang Y, Schoonmaker JP, Bradford BJ and Beitz DC (2008). Response of milk fatty acid composition to dietary supplementation of soy oil, conjugated linoleic acid, or both. J. Dairy Sci. 91: 260-270. PMid:18096948   Kadegowda AK, Bionaz M, Thering B, Piperova LS, et al. (2009). Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements. J. Dairy Sci. 92: 2007-2019. PMid:19389958   Kadegowda AK, Connor EE, Teter BB, Sampugna J, et al. (2010). Dietary trans fatty acid isomers differ in their effects on mammary lipid metabolism as well as lipogenic gene expression in lactating mice. J. Nutr. 140: 919-924. PMid:20220207   Khan SA and Vanden Heuvel JP (2003). Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J. Nutr. Biochem. 14: 554-567.   Lock AL, Teles BM, Perfield JW, Bauman DE, et al. (2006). A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J. Dairy Sci. 89: 1525-1532.   Loor JJ, Ferlay A, Ollier A, Doreau M, et al. (2005). Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. J. Dairy Sci. 88: 726-740.   Perfield JW, Bernal-Santos G, Overton TR and Bauman DE (2002). Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. J. Dairy Sci. 85: 2609-2617.   Peterson DG, Baumgard LH and Bauman DE (2002). Milk fat response to low doses of trans-10, cis-12 conjugated linoleic acid(CLA). J. Dairy Sci. 85: 1764-1766.   Peterson DG, Matitashvili EA and Bauman DE (2004). The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J. Nutr. 134: 2523-2527. PMid:15465741   Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. PMid:11328886 PMCid:55695   Piperova LS, Teter BB, Bruckental I, Sampugna J, et al. (2000). Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J. Nutr. 130: 2568-2574. PMid:11015491   Vandesompele J, De Preter K, Pattyn F, Poppe B, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: RESEARCH0034.   Viswanadha S, Giesy JG, Hanson TW and McGuire MA (2003). Dose response of milk fat to intravenous administration of the trans-10, cis-12 isomer of conjugated linoleic acid. J. Dairy Sci. 86: 3229-3236.   Yang T, Espenshade PJ, Wright ME, Yabe D, et al. (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110: 489-500.
J. J. Zhang, Zhang, X. Q., Liu, Y. H., Liu, H. M., Wang, Y. B., Tian, M. L., and Huang, Y. B., Variation characteristics of the nitrate reductase gene of key inbred maize lines and derived lines in China, vol. 9, pp. 1824-1835, 2010.
Ali ML, Taylor JH, Jie L, Sun G, et al. (2005). Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48: 521-533. PMid:16121248   Appenroth K, Meco R, Jourdan VV and Lillo C (2000). Phytochrome and post-translational regulation of nitrate reductase in higher plants. Plant Sci. 159: 51-56.   Campbell WH (1999). Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Ver. Plant Physiol. Plant. Mol. Biol. 50: 277-303. PMid:15012211   Chen Y, Chao Q, Tan G, Zhao J, et al. (2008). Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor. Appl. Genet. 117: 1241-1252. PMid:18762906   Chuanchai P, Tan XI, Silapapun A and Suthipong P (2010). Early hybrid testing in tropical maize: are molecular markers useful for selecting the parental component? Kasetsart J. Nat. Sci. 44: 70-78.   Desikan R, Griffiths R, Hancock J and Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99: 16314-16318. PMid:12446847 PMCid:138608   Foyer CH, Valadier MH, Migge A and Becker TW (1998). Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol. 117: 283-292. PMid:9576798 PMCid:35013   Fulton TM, Chunwongse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209.   Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994). Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667-1674. PMid:12232440 PMCid:159711   Kolbert Z and Erdei L (2008). Involvement of nitrate reductase in auxin-induced NO synthesis. Plant Signal Behav. 3: 972-973. PMid:19704423 PMCid:2633746   Krakowsky MD, Lee M, Garay L, Woodman-Clikeman W, et al. (2006). Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor. Appl. Genet. 113: 821-830. PMid:16896717   Legesse BW, Myburg AA, Pixley KV and Botha AM (2007). Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144: 10-17. PMid:17567435   Li SS (1997). Selection and application of maize inbred line huangzaosi. Beijing Agric. Sci. 15: 19-21.   Li DH, Mao LH, Yang JS and Liu JG (2005). Breeding process and utilization of excellent maize inbred line 478. J. Laiyang Agric. Coll. 22: 159-164.   Li XH, Yuan LX, Li XH and Zhang SH (2003). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci. Agric. Sinica 36: 622-627.   Li Y, Wang Y, Wei M and Li X (2009). QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. Genet. 88: 61-66. PMid:19417545   Lu BL, Zhao WY and Liu RZ (2004). The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China. J. Maize Sci. 12: 127-128.   Lu Y, Yan J, Guimaraes CT, Taba S, et al. (2009). Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 120: 93-115. PMid:19823800   Menkir A, Kling JG, Badu-Apraku B and Ingelbrecht I (2005). Molecular marker-based genetic diversity assessment of striga-resistant maize inbred lines. Theor. Appl. Genet. 110: 1145-1153. PMid:15750826   Ning JL, Gao HM, Qu G and Yu B (2002). Utilization of inbred lines of Ludahonggu group in corn breeding and production in China. Rain Fed. Crops 22: 63-65.   Qu G, Xu WW, Chen DY and Li FZ (2002). Selection and application of superior maize inbred line Dan340. J. Maize Sci. 10: 30-33.   Schrag TA, Mohring J, Melchinger AE, Kusterer B, et al. (2010). Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor. Appl. Genet. 120: 451-461. PMid:19916002   Sivasankar S and Oaks A (1995). Regulation of nitrate reductase during early seedling growth (a role for asparagine and glutamine). Plant Physiol. 107: 1225-1231. PMid:12228428 PMCid:157256   Stevens R (2008). Prospects for using marker-assisted breeding to improve maize production in Africa. J. Sci. Food Agric. 88: 745-755.   Stöhr C and Ullrich WR (1997). A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129-132.   Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. PMid:17308934   Taramino G and Tingey S (1996). Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277-287. PMid:8984002   Wang CL, Cheng FF, Sun ZH, Tang JH, et al. (2008). Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129-1139. PMid:18677461   Wang YB, Wang ZH, Wang YP and Zhang X (1997). The analysis of heterotic group and improve of Chinese maize germplasm. Acta Agric. Boreali-Sinica 13: 74-80.   Xu SX, Liu J and Liu GS (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas 141: 207-215. PMid:15703037   Xu YR, Liu XE, Sun FM and Jiao RH (2006). The application of Mo17 and derived in Chinese. J. Jilin Agric. Sci. 31: 26-28.   Yan JB, Tang H, Huang YQ, Shi YG, et al. (2003). Genomic analysis of plant height in maize through molecular marker. Sci. Agric. Sinica 10: 1069-1075.   Zeng SX, Ren R and Liu XZ (1996). The important position of huangzaosi in maize breeding and production in China. J. Maize Sci. 4: 1-6.   Zhang SH (2005). Maize Production and Research in China: Advancement and Challenges, p. 3. In: Proceedings of the Ninth Asia Regional Maize Workshop, September 5-9, Beijing.   Zhang JH, Zhang JY, Yang XH, Jin H, et al. (2007). A study on genetic relationship of main maize inbred lines in Yunnan by SSR markers. J. Maize Sci. 15: 30-35.   Zhuang QS (2003). Chinese Wheat Improvement and Pedigree Analysis. Agricultural Publishing House, Beijing.