Publications

Found 2 results
Filters: Author is H.L.M. Moreira  [Clear All Filters]
2010
M. A. P. Costa, Bressel, R. M. C., Almeida, D. B., Oliveira, P. A., Bassini, L. N., Moreira, C. G. A., Manzke, V. H. B., Siewerdt, F., and Moreira, H. L. M., Genotyping in the Brazilian Criollo Horse Stud Book: resources and perspectives, vol. 9, pp. 1645-1653, 2010.
ABCCC (1941). Balanço de Crioula até 1941. In: Anais da ACCC. 9st edn. ABCCC, Pelotas.   ABCCC (2004). Capítulo III: Dos fins da associação. In: Estatuto da ABCCC. 9st edn. ABCCC, Pelotas.   Achmann R, Huber T, Wallner B, Dovc P, et al. (2001). Base substitutions in the sequences flanking microsatellite markers HMS3 and ASB2 interfere with parentage testing in the Lipizzan horse. Anim. Genet. 32: 52. http://dx.doi.org/10.1046/j.1365-2052.2001.0647k.x PMid:11419354   Binns MM, Holmes NG, Holliman A and Scott AM (1995). The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing. Br. Vet. J. 151: 9-15. http://dx.doi.org/10.1016/S0007-1935(05)80057-0   Bjornstad G and Roed KH (2002). Evaluation of factors affecting individual assignment precision using microsatellite data from horse breeds and simulated breed crosses. Anim. Genet. 33: 264-270. http://dx.doi.org/10.1046/j.1365-2052.2002.00868.x PMid:12139505   Bomcke E and Gengler N (2009). Combining microsatellite and pedigree data to estimate relationships among Skyros ponies. J. Appl. Genet. 50: 133-143. http://dx.doi.org/10.1007/BF03195664 PMid:19433910   Bowling AT, Eggleston-Stott ML, Byrns G, Clark RS, et al. (1997). Validation of microsatellite markers for routine horse parentage testing. Anim. Genet. 28: 247-252. http://dx.doi.org/10.1111/j.1365-2052.1997.00123.x PMid:9345720   Budowle B, Garofano P, Hellman A, Ketchum M, et al. (2005). Recommendations for animal DNA forensic and identity testing. Int. J. Legal Med. 119: 295-302. http://dx.doi.org/10.1007/s00414-005-0545-9 PMid:15834735   Cardellino RA (2000). Animal genetics resource in southern Brazil. Arch. Zootec. 49: 327-331.   Dakin EE and Avise JC (2004). Microsatellite null alleles in parentage analysis. Heredity 93: 504-509. http://dx.doi.org/10.1038/sj.hdy.6800545 PMid:15292911   Diaz S, Dulout FN and Peral-Garcia P (2002). Greater genetic variability in Argentine Creole than in Thoroughbred horses based on serum protein polymorphisms. Genet. Mol. Res. 1: 261-265. PMid:14963833   Dimsoski P (2003). Development of a 17-plex microsatellite polymerase chain reaction kit for genotyping horses. Croat. Med. J. 44: 332-335. PMid:12808728   Ellegren H, Johansson M, Sandberg K and Andersson L (1992). Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 23: 133-142. http://dx.doi.org/10.1111/j.1365-2052.1992.tb00032.x PMid:1443772   FICCC (2010). La FICCC. FICCC/International Federation of Creole Horse Breeder. [http://www.ficcc.net/acerca.php?cod=1]. Accessed January 5, 2010.   Giacomoni EH, Fernandez-Stolz GP and Freitas TR (2008). Genetic diversity in the Pantaneiro horse breed assessed using microsatellite DNA markers. Genet. Mol. Res. 7: 261-270. http://dx.doi.org/10.4238/vol7-1gmr367 PMid:18551391   Guerin G, Bertaud M and Amigues Y (1994). Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim. Genet. 25: 62. PMid:8161034   International Society of Animal Genetics. ISAG Species Panels 2003. Available at [http://www.isag.org.uk/Docs/02_PVpanels_LPCGH.doc]. Accessed January 5, 2010.   Jakabová D (2002). Effectiveness of six highly polymorphic microsatellite markers in resolving paternity cases in Thoroughbred horses in Slovakia. Czech J. Anim. Sci. 12: 497-501.   Jamieson A and Taylor SC (1997). Comparisons of three probability formulae for parentage exclusion. Anim. Genet. 28: 397-400. http://dx.doi.org/10.1111/j.1365-2052.1997.00186.x PMid:9616104   Kakoi H, Tozaki T and Gawahara H (2007). Molecular analysis using mitochondrial DNA and microsatellites to infer the formation process of Japanese native horse populations. Biochem. Genet. 45: 375-395. http://dx.doi.org/10.1007/s10528-007-9083-0 PMid:17265183   Kalinowski ST, Taper ML and Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x PMid:17305863   Kelly L, Postiglioni A, De Andres DF, Vega-Pla JL, et al. (2002). Genetic characterisation of the Uruguayan Creole horse and analysis of relationships among horse breeds. Res. Vet. Sci. 72: 69-73. http://dx.doi.org/10.1053/rvsc.2001.0525 PMid:12002640   Lee SY and Cho GJ (2006). Parentage testing of Thoroughbred horse in Korea using microsatellite DNA typing. J. Vet. Sci. 7: 63-67. http://dx.doi.org/10.4142/jvs.2006.7.1.63 PMid:16434852 PMCid:3242088   LeRoy G, Callede L, Verrier E, Meriaux JC, et al. (2009). Genetic diversity of a large set of horse breeds raised in France assessed by microsatellite polymorphism. Genet. Sel. Evol. 41: 5. http://dx.doi.org/10.1186/1297-9686-41-5 PMid:19284689 PMCid:3225878   Luís C, Gus Cothran E and Oom EE (2002). Microsatellites in Portuguese autochthonous horse breed: usefulness for parentage testing. Genet. Mol. Biol. 25: 131-134. http://dx.doi.org/10.1590/S1415-47572002000200003   Luis C, Cothran EG and Oom MM (2007a). Inbreeding and genetic structure in the endangered Sorraia horse breed: implications for its conservation and management. J. Hered. 98: 232-237. http://dx.doi.org/10.1093/jhered/esm009 PMid:17404326   Luis C, Juras R, Oom MM and Cothran EG (2007b). Genetic diversity and relationships of Portuguese and other horse breeds based on protein and microsatellite loci variation. Anim. Genet. 38: 20-27. http://dx.doi.org/10.1111/j.1365-2052.2006.01545.x PMid:17257184   Marklund S, Ellegren H, Eriksson S, Sandberg K, et al. (1994). Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim. Genet. 25: 19-23. PMid:8161016   Marshall TC, Slate J, Kruuk LE and Pemberton JM (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655. http://dx.doi.org/10.1046/j.1365-294x.1998.00374.x PMid:9633105   Mirol PM, Peral GP, Vega-Pla JL and Dulout FN (2002). Phylogenetic relationships of Argentinean Creole horses and other South American and Spanish breeds inferred from mitochondrial DNA sequences. Anim. Genet. 33: 356-363. http://dx.doi.org/10.1046/j.1365-2052.2002.00884.x PMid:12354144   Paredes M, Norambuena MC and Molina B (2009). Genetic diversity analysis in 12 microsatellite loci, used in equine paternity test in Chile. Arch. Zootec. 58: 111-116. http://dx.doi.org/10.4321/S0004-05922009000100012   Perez-Gutierrez LM, De la Pena A and Arana P (2008). Genetic analysis of the Hispano-Breton heavy horse. Anim. Genet. 39: 506-514. http://dx.doi.org/10.1111/j.1365-2052.2008.01762.x PMid:18680492   Plante Y, Vega-Pla JL, Lucas Z, Colling D, et al. (2007). Genetic diversity in a feral horse population from Sable Island, Canada. J. Hered. 98: 594-602. http://dx.doi.org/10.1093/jhered/esm064 PMid:17855732   Rousset F (2008). GENEPOP' 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8: 103-106. http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x PMid:21585727   Solis A, Jugo BM, Meriaux JC, Iriondo M, et al. (2005). Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation. J. Hered. 96: 670-678. http://dx.doi.org/10.1093/jhered/esi123 PMid:16267169   Thirstrup JP, Pertoldi C and Loeschcke V (2008). Genetic analysis, breed assignment and conservation priorities of three native Danish horse breeds. Anim. Genet. 39: 496-505. http://dx.doi.org/10.1111/j.1365-2052.2008.01767.x PMid:18840148   Tozaki T, Kakoi H, Mashima S, Hirota K, et al. (2001). Population study and validation of paternity testing for Thoroughbred horses by 15 microsatellite loci. J. Vet. Med. Sci. 63: 1191-1197. http://dx.doi.org/10.1292/jvms.63.1191 PMid:11767052   van de Goor LH, Panneman H and van Haeringen WA (2010). A proposal for standardization in forensic equine DNA typing: allele nomenclature for 17 equine-specific STR loci. Anim. Genet. 41: 122-127. http://dx.doi.org/10.1111/j.1365-2052.2009.01975.x PMid:19821810   van Haeringen H, Bowling AT, Stott ML, Lenstra JA, et al. (1994). A highly polymorphic horse microsatellite locus: VHL20. Anim. Genet. 25: 207. http://dx.doi.org/10.1111/j.1365-2052.1994.tb00129.x PMid:7943974   Vila C, Leonard JA, Gotherstrom A, Marklund S, et al. (2001). Widespread origins of domestic horse lineages. Science 291: 474-477. http://dx.doi.org/10.1126/science.291.5503.474 PMid:11161199   Waits LP, Luikart G and Taberlet P (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10: 249-256. http://dx.doi.org/10.1046/j.1365-294X.2001.01185.x PMid:11251803   Weir BS and Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358- 1370. http://dx.doi.org/10.2307/2408641
B. S. Vaz, Cerqueira, G. M., Silva, J. C., Manzke, V. H. B., Moreira, C. G. A., and Moreira, H. L. M., Sequence analysis of the growth hormone gene of the South American catfish Rhamdia quelen, vol. 9. pp. 2184-2190, 2010.
Baldisserotto B (2009). Freshwater fish culture in Rio Grande do Sul State: actual situation, problems and future perspectives. Cienc. Rural 39: 291-299. http://dx.doi.org/10.1590/S0103-84782008005000046   Boscardin NR (2008). A Produção Aqüicola Brasileira. In: Aqüicultura no Brasil: o Desafio é Crescer (Ostrensky A and Borghetti D Jr, eds.). Secretaria Especial de Aqüicultura e Pesca/FAO, Brasília, 27-72.   Chen Y, Wang Y, He S and Zhu Z (2004). Cloning and sequencing of the growth hormone gene of large yellow croaker and its phylogenetic significance. Biochem. Genet. 42: 365-375. http://dx.doi.org/10.1023/B:BIGI.0000039810.77865.d5 PMid:15524313   de Amorin MP, Gomes BVC, Martins YS, Sato Y, et al. (2009). Early development of the silver catfish Rhamdia quelen (Quoy & Gaimard, 1824) (Pisces: Heptapteridae) from the São Francisco River Basin, Brazil. Aquac. Res. 40: 172- 180. http://dx.doi.org/10.1111/j.1365-2109.2008.02079.x   DeLano WL (2002). Pymol: An open-source molecular graphics tool. In: CCP4. Newsl. Protein Crystallogr. 40: 44-53.   Duan C (1998). Nutritional and developmental regulation of insulin-like growth factors in fish. J. Nutr. 128: 306S-314S. PMid:9478013   Eswar N, John B, Mirkovic N, Fiser A, et al. (2003). Tools for comparative protein structure modeling and analysis. Nucleic Acids Res. 31: 3375-3380. http://dx.doi.org/10.1093/nar/gkg543 PMid:12824331 PMCid:168950   Ferreira CS, Vaz BS, Velasco G, Tavares RA, et al. (2009). Poseidon Linux 3.x - The Scientific GNU/Linux option. Panamjas 4: I-VI.   Fracalossi DM, Meyer G, Weingartner M, Santamaria FM, et al. (2004). Desempenho do jundiá, Rhamdia quelen, e do dourado, Salminus brasiliensis, em viveiros de terra na região sul do Brasil. Acta Sci. Anim. Sci. 26: 345-352. http://dx.doi.org/10.4025/actascianimsci.v26i3.1806   Gomes LC, Golombieski JI and Gomes ARC (2000). Biology of Rhamdia quelen (Teleostei, Pemelodidae). Cienc. Rural 30: 179-185. http://dx.doi.org/10.1590/S0103-84782000000100029   Gomez JM, Loir M and Le Gac F (1998). Growth hormone receptors in testis and liver during the spermatogenetic cycle in rainbow trout (Oncorhynchus mykiss). Biol. Reprod. 58: 483-491. http://dx.doi.org/10.1095/biolreprod58.2.483 PMid:9475405   IBAMA (Instituto Brasileiro do Meio Ambiente) (2008). Estatística da Pesca 2006 Brasil: Grandes Regiões e Unidades da Federação. IBAMA, Brasília.   Lambert C, Leonard N, De Bolle X, and Depiereux E (2002). ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 18: 1250-1256. http://dx.doi.org/10.1093/bioinformatics/18.9.1250 PMid:12217917   Marins L, Levy J, Folch J and Sanchez A (2003). A growth hormone-based phylogenetic analysis of euteleostean fishes including a representative species of the Atheriniformes Order, Odontesthes argentinensis. Genet. Mol. Biol. 26: 295-300. http://dx.doi.org/10.1590/S1415-47572003000300013   McCormick SD (2001). Endocrine control of osmoregulation in teleost fish. Am. Zool. 41: 781-794. http://dx.doi.org/10.1668/0003-1569(2001)041[0781:ECOOIT]2.0.CO;2   Moriyama S, Oda M, Takahashi A, Sower SA, et al. (2006). Genomic structure of the sea lamprey growth hormone-encoding gene. Gen. Comp. Endocrinol. 148: 33-40. http://dx.doi.org/10.1016/j.ygcen.2005.09.023 PMid:16288756   Pinheiro JS, Wolff J, Araújo R and Hilsdorf A (2008). Molecular cloning and sequence analysis of growth hormone cDNA of Neotropical freshwater fish Pacu (Piaractus mesopotamicus). Genet. Mol. Biol. 31: 381-384. http://dx.doi.org/10.1590/S1415-47572008000200037   Sciara AA, Rubiolo JA, Somoza GM and Arranz SE (2006). Molecular cloning, expression and immunological characterization of pejerrey (Odontesthes bonariensis) growth hormone. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 142: 284-292. http://dx.doi.org/10.1016/j.cbpc.2005.10.015 PMid:16326143   Xu B, Moriyama S, Zhang PJ, Miao HZ, et al. (2001). The complete amino acid sequence of growth hormone and partial amino acid sequence of prolactin and somatolactin from sea perch (Lateolabrax japonicus). Aquaculture 201: 117- 136. http://dx.doi.org/10.1016/S0044-8486(01)00528-2   Zohar Y (1989). Endocrinology and fish farming: Aspects in reproduction, growth, and smoltification. Fish Physiol. Biochem. 7: 395-405. http://dx.doi.org/10.1007/BF00004734