Publications

Found 11 results
Filters: Author is Y.X. Zhang  [Clear All Filters]
2016
H. C. H. Li, Zhang, Y. X., Liu, Y., Wang, Q. S. H., Li, H. C. H., Zhang, Y. X., Liu, Y., and Wang, Q. S. H., Effect of IL-17 monoclonal antibody Secukinumab combined with IL-35 blockade of Notch signaling pathway on the invasive capability of hepatoma cells, vol. 15, p. -, 2016.
H. C. H. Li, Zhang, Y. X., Liu, Y., Wang, Q. S. H., Li, H. C. H., Zhang, Y. X., Liu, Y., and Wang, Q. S. H., Effect of IL-17 monoclonal antibody Secukinumab combined with IL-35 blockade of Notch signaling pathway on the invasive capability of hepatoma cells, vol. 15, p. -, 2016.
Y. Q. Chen, Li, T., Guo, W. Y., Su, F. J., Zhang, Y. X., Chen, Y. Q., Li, T., Guo, W. Y., Su, F. J., Zhang, Y. X., Chen, Y. Q., Li, T., Guo, W. Y., Su, F. J., and Zhang, Y. X., Identification of altered pathways in Down syndrome-associated congenital heart defects using an individualized pathway aberrance score, vol. 15, p. -, 2016.
Y. Q. Chen, Li, T., Guo, W. Y., Su, F. J., Zhang, Y. X., Chen, Y. Q., Li, T., Guo, W. Y., Su, F. J., Zhang, Y. X., Chen, Y. Q., Li, T., Guo, W. Y., Su, F. J., and Zhang, Y. X., Identification of altered pathways in Down syndrome-associated congenital heart defects using an individualized pathway aberrance score, vol. 15, p. -, 2016.
Y. Q. Chen, Li, T., Guo, W. Y., Su, F. J., Zhang, Y. X., Chen, Y. Q., Li, T., Guo, W. Y., Su, F. J., Zhang, Y. X., Chen, Y. Q., Li, T., Guo, W. Y., Su, F. J., and Zhang, Y. X., Identification of altered pathways in Down syndrome-associated congenital heart defects using an individualized pathway aberrance score, vol. 15, p. -, 2016.
M. H. Rahman, Yu, P., Zhang, Y. X., Sun, L. P., Wu, W. X., Shen, X. H., Zhan, X. D., Chen, D. B., Cao, L. Y., and Cheng, S. H., Quantitative trait loci mapping of the stigma exertion rate and spikelet number per panicle in rice (Oryza sativa L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Natural Science Foundation of China (#31101203), the National Key Transform Program (#2014ZX08001-002), the National Natural Science Foundation of China (#31501290), the Zhejiang Provincial Natural Science Foundation of China (Grant #LQ14C130003), and the Super Rice Breeding Innovation Team and Rice Heterosis Mechanism Research Innovation Team of the Chinese Academy of Agricultural Sciences Innovation Project (CAAS-ASTIP-2013-CNRRI). REFERENCESCheng SH, Zhuang JY, Fan YY, Du JH, et al (2007). Progress in research and development on hybrid rice: a super-domesticate in China. Ann. Bot. (Lond.) 100: 959-966. http://dx.doi.org/10.1093/aob/mcm121 Deshmukh R, Singh A, Jain N, Anand S, et al (2010). Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct. Integr. Genomics 10: 339-347. http://dx.doi.org/10.1007/s10142-010-0167-2 He Q, Zhang K, Xu C, Xing Y, et al (2010). Additive and additive × additive interaction make important contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. J. Genet. Genomics 37: 795-803. http://dx.doi.org/10.1016/S1673-8527(09)60097-7 Jiang GH, Xu CG, Tu JM, Li XH, et al (2004). Pyramiding of insect-and disease-resistance genes into an elite indica, cytoplasm male sterile restorer line of rice, ‘Minghui 63’. Plant Breed. 123: 112-116. http://dx.doi.org/10.1046/j.1439-0523.2003.00917.x Li P, Feng F, Zhang Q, Chao Y, et al (2014). Genetic mapping and validation of quantitative trait loci for stigma exertion rate in rice. Mol. Breed. 34: 2131-2138. http://dx.doi.org/10.1007/s11032-014-0168-2 Li WH, Dong GJ, Hu XM, Teng S, et al (2003). [QTL analysis for percentage of exserted stigma in rice (Oryza sativa L.)]. Yi Chuan Xue Bao 30: 637-640. Liang Y, Zhan X, Gao Z, Lin Z, et al (2012). Mapping of QTLs association with important agronomic traits using three populations derived from super hybrid rice Xieyou9308. Euphytica 184: 1-13. http://dx.doi.org/10.1007/s10681-011-0456-4 Lincoln SE, Daly MJ and Lander E (1992). Constructing Genetic Map with Mapmaker/ Exp 3:0 Whitehead Institute Technical report. 3rd edn. Whitehead Institute, Cambridge. Long LH, Shu K, et al (2000). Increasing outcrossing rate of indica hybrid rice. J. Hunan Agric. Univ. 26: 205-208. Lou J, Yue GH, Yang WQ, Mei HW, et al (2014). Mapping QTLs influencing stigma exertion in rice. Bulg. J. Agric. Sci. 20: 1450-1456. McCouch SR, et al (2008). Gene nomenclature system for rice. Rice 1: 72-84. http://dx.doi.org/10.1007/s12284-008-9004-9 Miyata M, Yamamoto T, Komori T, Nitta N, et al (2007). Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor. Appl. Genet. 114: 539-548. http://dx.doi.org/10.1007/s00122-006-0454-4 Songpig H, Ying Z, Lin Z, Xudong Z, et al (2009). QTL analysis of floral traits of rice (Oryza sativa L.) under well-watered and drought stress conditions. Genes Genomics 31: 173-181. http://dx.doi.org/10.1007/BF03191150 Takano-kai N, Doi K, Yoshimura A, et al (2011). GS3 participates in stigma exertion as well as seed length in rice. Breed. Sci. 61: 244-250. http://dx.doi.org/10.1270/jsbbs.61.244 Tian DC, Huang SK, Duan YG, Wang YH, et al (2004). The relationship between flowering and pollination time and outcrossing rate of male sterile lines in hybrid rice seed production. Hybrid Rice 19: 50-54. Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, et al (2005). Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod. Sci. 8: 330-333. http://dx.doi.org/10.1626/pps.8.330 Uga Y, Fukuta Y, Cai HW, Iwata H, et al (2003). Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L. and Oryza rufipogon Griff. Theor. Appl. Genet. 107: 218-226. http://dx.doi.org/10.1007/s00122-003-1227-y Wang J, et al (2009). Inclusive composite interval mapping of quantitative trait genes. Acta Agron. Sin. 35: 239-245. http://dx.doi.org/10.3724/SP.J.1006.2009.00239 Yan WG, Li Y, Agrama HA, Luo D, et al (2009). Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol. Breed. 24: 277-292. http://dx.doi.org/10.1007/s11032-009-9290-y Yu XQ, Mei HW, Luo LJ, Liu GL, et al (2006). Dissection of additive, epistatic effect and Q x E interaction of quantitative trait loci influencing stigma exsertion under water stress in rice. Yi Chuan Xue Bao 33: 542-550. http://dx.doi.org/10.1016/S0379-4172(06)60083-8 Zhang Y, Luo L, Liu T, Xu C, et al (2009). Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor. Appl. Genet. 118: 1035-1044. http://dx.doi.org/10.1007/s00122-008-0960-7  
2012
M. Y. Zhao, Xue, Y., Zhao, Z. Q., Li, F. J., Fan, D. P., Wei, L. L., Sun, X. J., Zhang, X., Wang, X. C., Zhang, Y. X., and Li, J. C., Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population, vol. 11, pp. 3425-3431, 2012.
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Ding S, Li L and Zhu X (2008). Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum. Immunol. 69: 129-133. http://dx.doi.org/10.1016/j.humimm.2007.11.006 PMid:18361939   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Dong H, Jiang DP, Zhou J, et al. (2008). Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit. Care Med. 36: 2274-2280. http://dx.doi.org/10.1097/CCM.0b013e318180b1ed PMid:18596635   Härtel C, Rupp J, Hoegemann A, Bohler A, et al. (2008). 159C>T CD14 genotype - functional effects on innate immune responses in term neonates. Hum. Immunol. 69: 338-443. http://dx.doi.org/10.1016/j.humimm.2008.04.011 PMid:18571004   Hoheisel G, Zheng L, Teschler H, Striz I, et al. (1995). Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 108: 1614-1616. http://dx.doi.org/10.1378/chest.108.6.1614 PMid:7497770   Juffermans NP, Verbon A, van Deventer SJ, Buurman WA, et al. (1998). Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect Dis. 178: 1839-1842. http://dx.doi.org/10.1086/314492 PMid:9815247   Kang HJ, Choi YM, Chae SW, Woo JS, et al. (2006). Polymorphism of the CD14 gene in perennial allergic rhinitis. Int. J. Pediatr. Otorhinolaryngol. 70: 2081-2085. http://dx.doi.org/10.1016/j.ijporl.2006.07.024 PMid:16950521   Lawn SD, Labeta MO, Arias M, Acheampong JW, et al. (2000). Elevated serum concentrations of soluble CD14 in HIV-and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin. Exp. Immunol. 120: 483-487. http://dx.doi.org/10.1046/j.1365-2249.2000.01246.x PMid:10844527 PMCid:1905566   Liang XH, Cheung W, Heng CK, Liu JJ, et al. (2006). CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet. Genomics 16: 229-236. http://dx.doi.org/10.1097/01.fpc.0000197466.14340.0f PMid:16538169   Liu CP, Li XG, Lou JT, Xue Y, et al. (2009). Association analysis of the PHOX2B gene with Hirschsprung disease in the Han Chinese population of Southeastern China. J. Pediatr. Surg. 44: 1805-1811. http://dx.doi.org/10.1016/j.jpedsurg.2008.12.009 PMid:19735829   Manaster C, Zheng W, Teuber M, Wachter S, et al. (2005). InSNP: a tool for automated detection and visualization of SNPs and InDels. Hum. Mutat. 26: 11-19. http://dx.doi.org/10.1002/humu.20188 PMid:15931688   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Shams H, Wizel B, Lakey DL, Samten B, et al. (2003). The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63-69. http://dx.doi.org/10.1016/S0928-8244(03)00039-7   Sugawara I, Yamada H, Li C, Mizuno S, et al. (2003a). Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327-336. PMid:12825894   Sugawara I, Yamada H, Mizuno S, Takeda K, et al. (2003b). Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47: 841-847. PMid:14638995   Triantafilou M and Triantafilou K (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23: 301-304. http://dx.doi.org/10.1016/S1471-4906(02)02233-0   Ulevitch RJ and Tobias PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437-457. http://dx.doi.org/10.1146/annurev.iy.13.040195.002253 PMid:7542010   Vercelli D, Baldini M and Martinez F (2001). The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation? Int. Arch. Allergy Immunol. 124: 20-24. http://dx.doi.org/10.1159/000053658 PMid:11306916   Yim JJ, Lee HW, Lee HS, Kim YW, et al. (2006). The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 7: 150-155. http://dx.doi.org/10.1038/sj.gene.6364274 PMid:16437124   Zhang G, Goldblatt J and LeSouef PN (2008). Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 63: 1411-1417. http://dx.doi.org/10.1111/j.1398-9995.2008.01804.x PMid:18925877
2011
Y. X. Zhang, Xue, Y., Zhao, M. Y., Wang, H. J., Li, J. C., Liu, J. Y., Li, F. J., and Zhou, J. M., Association of TIRAP (MAL) gene polymorhisms with susceptibility to tuberculosis in a Chinese population, vol. 10, pp. 7-15, 2011.
Akira S and Takeda K (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. http://dx.doi.org/10.1038/nri1391 PMid:15229469   Austin CM, Ma X and Graviss EA (2008). Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J. Infect. Dis. 197: 1713-1716. http://dx.doi.org/10.1086/588384 PMid:18419343   Bafica A, Scanga CA, Feng CG, Leifer C, et al. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202: 1715-1724. http://dx.doi.org/10.1084/jem.20051782 PMid:16365150 PMCid:2212963   Barreiro LB, Neyrolles O, Babb CL, Tailleux L, et al. (2006). Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med. 3: e20. http://dx.doi.org/10.1371/journal.pmed.0030020 PMid:16379498 PMCid:1324949   Barrett JC, Fry B, Maller J and Daly MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265. http://dx.doi.org/10.1093/bioinformatics/bth457 PMid:15297300   Bellamy R, Fry B, Maller J and Daly MJ (2003). Susceptibility to mycobacterial infections: the importance of host genetics. Genes Immun. 4: 4-11. http://dx.doi.org/10.1017/CBO9780511546235   Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516. http://dx.doi.org/10.1093/intimm/dxh052 PMid:14978024   Castiblanco J, Varela DC, Castano-Rodriguez N, Rojas-Villarraga A, et al. (2008). TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect. Genet. Evol. 8: 541-544. http://dx.doi.org/10.1016/j.meegid.2008.03.001 PMid:18417424   Delgado JC, Baena A, Thim S and Goldfeld AE (2002). Ethnic-specific genetic associations with pulmonary tuberculosis. J. Infect. Dis. 186: 1463-1468. http://dx.doi.org/10.1086/344891 PMid:12404162   Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37. http://dx.doi.org/10.1016/j.cellimm.2009.03.008 PMid:19362712 PMCid:2730726   Dye C (2006). Global epidemiology of tuberculosis. Lancet 367: 938-940. http://dx.doi.org/10.1016/S0140-6736(06)68384-0   George J, Kubarenko AV, Rautanen A, Mills TC, et al. (2010). MyD88 adaptor-like D96N is a naturally occurring loss-of-function variant of TIRAP. J. Immunol. 184: 3025-3032. http://dx.doi.org/10.4049/jimmunol.0901156 PMid:20164415   Harding CV and Boom WH (2010). Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat. Rev. Microbiol. 8: 296-307. http://dx.doi.org/10.1038/nrmicro2321 PMid:20234378 PMCid:3037727   Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, et al. (2006). A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis. 194: 1127-1134. http://dx.doi.org/10.1086/507907 PMid:16991088   Jo EK (2008). Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr. Opin. Infect. Dis. 21: 279-286. http://dx.doi.org/10.1097/QCO.0b013e3282f88b5d PMid:18448973   Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell. Microbiol. 9: 1087-1098. http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x PMid:17359235   Khor CC, Chapman SJ, Vannberg FO, Dunne A, et al. (2007). A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39: 523-528. http://dx.doi.org/10.1038/ng1976 PMid:17322885 PMCid:2660299   Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2: e1318. http://dx.doi.org/10.1371/journal.pone.0001318 PMid:18091991 PMCid:2117342   Nagpal K, Plantinga TS, Wong J, Monks BG, et al. (2009). A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284: 25742-25748. http://dx.doi.org/10.1074/jbc.M109.014886 PMid:19509286 PMCid:2757976   Nejentsev S, Thye T, Szeszko JS, Stevens H, et al. (2008). Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet. 40: 261-262. http://dx.doi.org/10.1038/ng0308-261 PMid:18305471   O'Neill LA and Bowie AG (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7: 353-364. http://dx.doi.org/10.1038/nri2079 PMid:17457343   Ogus AC, Yoldas B, Ozdemir T, Uguz A, et al. (2004). The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J. 23: 219-223. http://dx.doi.org/10.1183/09031936.03.00061703 PMid:14979495   Quesniaux V, Fremond C, Jacobs M, Parida S, et al. (2004). Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 6: 946-959. http://dx.doi.org/10.1016/j.micinf.2004.04.016 PMid:15310472   Rossman M and Oner-Eyuboglu A (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman A, ed.). 3rd edn. McGraww Hill Company, New York, 2483-2501.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Sanchez D, Rojas M, Hernandez I, Radzioch D, et al. (2010). Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cell. Immunol. 260: 128-136. http://dx.doi.org/10.1016/j.cellimm.2009.10.007 PMid:19919859   Schroder NW and Schumann RR (2005). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5: 156-164. PMid:15766650   Thuong NT, Hawn TR, Thwaites GE, Chau TT, et al. (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 8: 422-428. http://dx.doi.org/10.1038/sj.gene.6364405 PMid:17554342   Xue Y, Jin L, Li AZ, Wang HJ, et al. (2010a). Microsatellite polymorphisms in intron 2 of the Toll-like receptor 2 gene and their association with susceptibility to pulmonary tuberculosis in Han Chinese. Clin. Chem. Lab. Med. 48: 785-789. http://dx.doi.org/10.1515/cclm.2010.154 PMid:20298136   Xue Y, Zhao ZQ, Wang HJ, Jin L, et al. (2010b). Toll-like receptors 2 and 4 gene polymorphisms in a southeastern Chinese population with tuberculosis. Int. J. Immunogenet. 37: 135-138. http://dx.doi.org/10.1111/j.1744-313X.2009.00892.x PMid:20002809   Yamamoto M, Sato S, Hemmi H, Sanjo H, et al. (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420: 324-329. http://dx.doi.org/10.1038/nature01182 PMid:12447441
2010
Y. Xue, Zhao, Z. Q., Hong, D., Zhao, M. Y., Zhang, Y. X., Wang, H. J., Wang, Y., and Li, J. C., Lack of association between MD-2 promoter gene variants and tuberculosis, vol. 9, pp. 1584-1590, 2010.
Abel B, Thieblemont N, Quesniaux VJ, Brown N, et al. (2002). Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169: 3155-3162. PMid:12218133   Abreu MT, Arnold ET, Thomas LS, Gonsky R, et al. (2002). TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277: 20431-20437. http://dx.doi.org/10.1074/jbc.M110333200 PMid:11923281   Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516. http://dx.doi.org/10.1093/intimm/dxh052 PMid:14978024   Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, et al. (2005). Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280: 20961-20967. http://dx.doi.org/10.1074/jbc.M411379200 PMid:15809303   Cooke GS and Hill AV (2001). Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2: 967-977. http://dx.doi.org/10.1038/35103577 PMid:11733749   Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis. PLoS. Genet. 4: e1000218. http://dx.doi.org/10.1371/journal.pgen.1000218 PMid:18927625 PMCid:2568981   Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37. http://dx.doi.org/10.1016/j.cellimm.2009.03.008 PMid:19362712 PMCid:2730726   Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377. http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d PMid:17545720   Gu W, Shan YA, Zhou J, Jiang DP, et al. (2007). Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann. Surg. 246: 151-158. http://dx.doi.org/10.1097/01.sla.0000262788.67171.3f PMid:17592304 PMCid:1899213   Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 9: 1087-1098. http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x PMid:17359235   Kamath AB, Alt J, Debbabi H and Behar SM (2003). Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71: 4112-4118. http://dx.doi.org/10.1128/IAI.71.7.4112-4118.2003 PMid:12819102 PMCid:162027   Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS. One 2: e1318. http://dx.doi.org/10.1371/journal.pone.0001318 PMid:18091991 PMCid:2117342   Means TK, Jones BW, Schromm AB, Shurtleff BA, et al. (2001). Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166: 4074-4082. PMid:11238656   Moller M, de Wit E and Hoal EG (2010). Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol. Med. Microbiol. 58: 3-26. http://dx.doi.org/10.1111/j.1574-695X.2009.00600.x PMid:19780822   Nagai Y, Akashi S, Nagafuku M, Ogata M, et al. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3: 667-672. PMid:12055629   Nishitani C, Takahashi M, Mitsuzawa H, Shimizu T, et al. (2009). Mutational analysis of Cys(88) of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int. Immunol. 21: 925-934. http://dx.doi.org/10.1093/intimm/dxp059 PMid:19556306   Pacheco E, Fonseca C, Montes C, Zabaleta J, et al. (2004). CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol. Med. Microbiol. 40: 207-213. http://dx.doi.org/10.1016/S0928-8244(03)00369-9   Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect. Dis. 196: 1698-1706. http://dx.doi.org/10.1086/522147 PMid:18008256   Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.   Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54. http://dx.doi.org/10.1002/humu.1380040107 PMid:7951258   Sandanger O, Ryan L, Bohnhorst J, Iversen AC, et al. (2009). IL-10 enhances MD-2 and CD14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients. J. Immunol. 182: 588-595. PMid:19109192   Shim TS, Turner OC and Orme IM (2003). Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis 83: 367-371. http://dx.doi.org/10.1016/S1472-9792(03)00071-4   Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, et al. (2008). Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 111: 2122-2131. http://dx.doi.org/10.1182/blood-2007-06-097782 PMid:18056837   Velez DR, Wejse C, Stryjewski ME, Abbate E, et al. (2010). Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 127: 65-73. http://dx.doi.org/10.1007/s00439-009-0741-7 PMid:19771452 PMCid:2902366   Visintin A, Iliev DB, Monks BG, Halmen KA, et al. (2006). MD-2. Immunobiology 211: 437-447. http://dx.doi.org/10.1016/j.imbio.2006.05.010 PMid:16920483   Wolfs TG, Dunn-Siegrist I, van't Veer C, Hodin CM, et al. (2008). Increased release of sMD-2 during human endotoxemia and sepsis: a role for endothelial cells. Mol. Immunol. 45: 3268-3277. http://dx.doi.org/10.1016/j.molimm.2008.02.014 PMid:18384879